INGEGNERIA ELETTRICA ELETTRONICA E INFORMATICAAutomation Engineering and Control of Complex Systems (Ingegneria dell'automazione e del controllo dei sistemi complessi)Anno accademico 2023/2024

1002066 - ROBOTICS A - Z

Docente: Giovanni MUSCATO

Risultati di apprendimento attesi

Conoscenza e capacità di comprensione 

Il corso mira alla conoscenza del funzionamento di sistemi robotici in generale.

In particolare l'attenzione è rivolta sia ai manipolatori robotici che ai robot mobili per applicazioni industriali e di servizio.

Cinematica, Cinematica differenziale, Dinamica, Controllo e Programmazione di Robot Industriali. Cinematica, Calcolo di traiettorie, localizzazione e navigazione di robot mobili.

Conoscenze e capacità di comprensione applicate

Alla fine del corso lo studente dovrà essere in grado di analizzare un sistema robotico e di progettarne il sistema di controllo.

Autonomia di giudizio

Gli studenti dovranno avere le competenze per poter analizzare un sistema robotico, nelle sue componenti e dovranno essere in grado di proporre soluzioni a problemi che richiedono l'impiego di sistemi robotici. 

Abilità comunicative

Gli studenti dovranno possedere le proprietà di linguaggio e le terminologie tipiche dei sistemi robotici e dovranno essere in grado di comunicarne caratteristiche, prestazioni e modalità di funzionamento sia ad esperti del settore che a interlocutori non specialisti.

Capacità di apprendimento

Gli studi intrapresi potranno consentire lo sviluppo ulteriore degli studi verso l'analisi e la progettazione anche di sistemi robotici più complessi in modo auto-diretto ed autonomo.

Modalità di svolgimento dell'insegnamento

Il corso è svolto mediante lezioni frontali attraverso l'uso di slide disponibili su lla piattaforma Studium.

Il corso comprende anche una serie di esercitazioni al calcolatore per la simulazione di robot e in laboratorio per lo sviluppo di esperienze pratiche di controllo e programmazione di sistemi robotici.

Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.

Prerequisiti richiesti

Conoscenze di base di Controlli Automatici, Misure Elettroniche, Elettronica, Fondamenti di Informatica.

Frequenza lezioni

La frequenza non è richiesta, seppure fortemente consigliata, per sostenere la prova di esame.

La frequenza è indispensabile per lo svolgimento delle esercitazioni di laboratorio.

Contenuti del corso

Introduzione: Sviluppi storici, Classificazione dei robot, Componenti di un robot. Applicazioni e Mercato della robotica. Cinematica e dinamica: Trasformazione cinematica diretta, Matrici di rotazione, Rappresentazione di Denavit-Hartenberg, Equazioni cinematiche dei manipolatori, Trasformazione cinematica inversa, Cinematica differenziale, Matrice Jacobiana, Statica, Rigidità e Cedevolezza, Ellissoidi di manipolabilità. Analisi della ridondanza. Equazioni della dinamica del Braccio di un Robot. Calcolo delle traiettorie di un manipolatore: Pianificazione della traiettoria, Traiettorie nello spazio dei giunti e nello spazio operativo. Controllo: Controllo in catena chiusa di un servomeccanismo di posizione, Regolatore P.I.D., Controllo decentralizzato; Controllo centralizzato, Controllo robusto, controllo adattativo. Controllo nello spazio operativo. Controllo dell'interazione, Controllo di forza, Controllo ibrido. Sensori e attuatori per la robotica: Sistemi di attuazione dei giunti, Azionamenti elettrici, idraulici e pneumatici, Sensori propriocettivi, Sensori esterocettivi. Visione per la robotica: Acquisizione delle immagini, Geometria dell'immagine, Relazioni di base tra i pixel, Preelaborazione, Segmentazione, Descrizione, Riconoscimento, Interpretazione. Controllo visuale di un robot. Service robot: Definizione di service robot, Applicazioni di Service robot. I robot mobili. Navigazione di un robot mobile, Dead Reckoning, Odometria, Map-Building, Map-Matching. Controllo di traiettorie di robot mobili. Robot non-olonomi. Esempi di Service robot. Laboratorio di robotica: Esperienze di programmazione e controllo di robot manipolatori e mobili.

Testi di riferimento

[1] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo,“Robotica”, Mc Graw-Hill Italia [2] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo,“Robotics”, Springer [3] R. Siegwart, I. Nourbakhsh, “Introduction to Autonomous Mobile Robots”, MIT Press [4] Dispense del corso su Studium


AutoreTitoloEditoreAnnoISBN
Siciliano, Sciavicco, Villani, OrioloRobotics: Modelling, Planning and ControlSpringer2010978-1-84996-634-4
Siegwart, Nourbakhsh, ScaramuzzaIntroduction to Autonomous Mobile robotsMIT Press20110262015358

Programmazione del corso

 ArgomentiRiferimenti testi
1Introduction. Applications of robots. (2 hours)[1]
2Direct kinematics (4 hours)[2]
3Inverse kinematics (3 hours)[2]
4Differential kinematics. Jacobian. (2 hours)[2]
5Differential kinematics: singularities, redundancy (2 hours)[2]
6Differential kinematics: Inverse differential kinematics, Analytical Jacobian (3 hours)[2]
7Orientation errors (3 hours)[2]
8Statics Manipulability Ellipsoid,(2 hours)[2]
9Trajectory planning and Dynamics (2 hours)[2]
10Decentralised control (2 hours)[2]
11PD control with gravity compensation (2 hours)[2]
12Control with feedback linearization (2 hours)[2]
13Introduction to mobile robots (4 hours)[3]
14Mobile robots localization (2 hours)[3]
15Mobile robots mapping (2 hours)[3]
16Markov localization Kalman filter localization (2 hours)[3]
17Quadrotor modelling and control (3 hours)[4]
18Underwater robots (1 hour)[4]
19Inertial Measurement Units (1 hour)[4]
20Satellite Localization Systems., GNSS, DGPS, Galileo (2 hours)[4]
21Mobile robots Control (3 hours)[3]
22MATLAB Robotics toolbox, kinematics, control and simulation of manupulators and mobile robots (9 hours)[4]
23KUKA and AUBO manipulator programming (2 hours)[4]
24Mobile robots laboratory exercise. Examples of robots, Agriculture, climbing volcanoes, demining (10 hours)[4]
25Robotic sensors overview and exercise (5 hours)[4]
26Quadrotor laboratory exercise (2 hours)[4]
27ROS programming (2 hours)[4]

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

The exam consists in the presentation of the laboratory experiments performed, in a report and in an oral dissertation.

Learning assessment may also be carried out on line, should the conditions require it.

Esempi di domande e/o esercizi frequenti

Differential kinematics. Jacobian computation. Statics. Redundant manipulators. Kalman filter. Markov localization. Decentralised control.


English version