Conoscenza e capacità di comprensione
Il corso mira alla conoscenza del funzionamento di sistemi robotici in generale.
In particolare l'attenzione è rivolta sia ai manipolatori robotici che ai robot mobili per applicazioni industriali e di servizio.
Cinematica, Cinematica differenziale, Dinamica, Controllo e Programmazione di Robot Industriali. Cinematica, Calcolo di traiettorie, localizzazione e navigazione di robot mobili.
Conoscenze e capacità di comprensione applicate
Alla fine del corso lo studente dovrà essere in grado di analizzare un sistema robotico e di progettarne il sistema di controllo.
Autonomia di giudizio
Gli studenti dovranno avere le competenze per poter analizzare un sistema robotico, nelle sue componenti e dovranno essere in grado di proporre soluzioni a problemi che richiedono l'impiego di sistemi robotici.
Abilità comunicative
Gli studenti dovranno possedere le proprietà di linguaggio e le terminologie tipiche dei sistemi robotici e dovranno essere in grado di comunicarne caratteristiche, prestazioni e modalità di funzionamento sia ad esperti del settore che a interlocutori non specialisti.
Capacità di apprendimento
Gli studi intrapresi potranno consentire lo sviluppo ulteriore degli studi verso l'analisi e la progettazione anche di sistemi robotici più complessi in modo auto-diretto ed autonomo.
Il corso è svolto mediante lezioni frontali attraverso l'uso di slide disponibili su lla piattaforma Studium.
Il corso comprende anche una serie di esercitazioni al calcolatore per la simulazione di robot e in laboratorio per lo sviluppo di esperienze pratiche di controllo e programmazione di sistemi robotici.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
La frequenza non è richiesta, seppure fortemente consigliata, per sostenere la prova di esame.
La frequenza è indispensabile per lo svolgimento delle esercitazioni di laboratorio.
Autore | Titolo | Editore | Anno | ISBN |
---|---|---|---|---|
Siciliano, Sciavicco, Villani, Oriolo | Robotics: Modelling, Planning and Control | Springer | 2010 | 978-1-84996-634-4 |
Siegwart, Nourbakhsh, Scaramuzza | Introduction to Autonomous Mobile robots | MIT Press | 2011 | 0262015358 |
Argomenti | Riferimenti testi | |
---|---|---|
1 | Introduction. Applications of robots. (2 hours) | [1] |
2 | Direct kinematics (4 hours) | [2] |
3 | Inverse kinematics (3 hours) | [2] |
4 | Differential kinematics. Jacobian. (2 hours) | [2] |
5 | Differential kinematics: singularities, redundancy (2 hours) | [2] |
6 | Differential kinematics: Inverse differential kinematics, Analytical Jacobian (3 hours) | [2] |
7 | Orientation errors (3 hours) | [2] |
8 | Statics Manipulability Ellipsoid,(2 hours) | [2] |
9 | Trajectory planning and Dynamics (2 hours) | [2] |
10 | Decentralised control (2 hours) | [2] |
11 | PD control with gravity compensation (2 hours) | [2] |
12 | Control with feedback linearization (2 hours) | [2] |
13 | Introduction to mobile robots (4 hours) | [3] |
14 | Mobile robots localization (2 hours) | [3] |
15 | Mobile robots mapping (2 hours) | [3] |
16 | Markov localization Kalman filter localization (2 hours) | [3] |
17 | Quadrotor modelling and control (3 hours) | [4] |
18 | Underwater robots (1 hour) | [4] |
19 | Inertial Measurement Units (1 hour) | [4] |
20 | Satellite Localization Systems., GNSS, DGPS, Galileo (2 hours) | [4] |
21 | Mobile robots Control (3 hours) | [3] |
22 | MATLAB Robotics toolbox, kinematics, control and simulation of manupulators and mobile robots (9 hours) | [4] |
23 | KUKA and AUBO manipulator programming (2 hours) | [4] |
24 | Mobile robots laboratory exercise. Examples of robots, Agriculture, climbing volcanoes, demining (10 hours) | [4] |
25 | Robotic sensors overview and exercise (5 hours) | [4] |
26 | Quadrotor laboratory exercise (2 hours) | [4] |
27 | ROS programming (2 hours) | [4] |
The exam consists in the presentation of the laboratory experiments performed, in a report and in an oral dissertation.
Learning assessment may also be carried out on line, should the conditions require it.
Differential kinematics. Jacobian computation. Statics. Redundant manipulators. Kalman filter. Markov localization. Decentralised control.