Il corso fornisce le nozioni di fisica di base, dagli elementi di fisica quantistica a cenni della teoria dei solidi e del trasporto quantistico, per la comprensione delle moderne Tencologie Quantistiche, descrivendone poi principi e fenomeni che ne sono alla base, e le applicazioni. L'obiettivo è quello di fornore allo studente abilità e competenze che complementino quelle di un curriculum in microelettronica, come (a) familiarità con le opportunità offerte dalla nanoelettronica e dalle tecnologie quantistiche; (b) capacità di utilizzare la meccanica quantistica in differenti contesti della ICT e delle nanotecnologie e valutare le diverse tecnologie dei nanosistemi; (c) acquisire una base per elaborare idee e proposte personali.
Il corso è motivato dalle esigneze multidisciplinari dei diversi settori industriali nel campo delle nanotecnologie, e della crescita del nuovo settore delle tecnologie quantistiche, che possono offrire nuove opportunità di lavoro e specializzazione ai nostri laureati.
Lezioni frontali, esercizi e dimostrazioni con software dedicato. Saranno organizzati dei Seminari tenuti da ricercatori da Enti di Ricerca operanti nel settore della nanoelettronica.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Lo studente deve possedere gli elementi del linguaggio, ossia una buona conoscenza della fisica classica, e una conoscenza elementare della fisica dei dispositivi elettronici.
I prerequisiti comprendono:
PARTE I: Meccanica Quantistica
PARTE II: Tecnologie quantistiche
[1] P. Mazzoldi, M. Nigro, C. Voci, Elementi di Fisica: Elettromagnetismo e Onde, Edises 2008.
[2] G. Falci. Appunti del corso di fisica dei nanosistemi. 2018.
[3] C. Cohen-Tannoudji, B. Diu, and F. Lalöe. Quantum Mechanics - vol 1, volume 1. Wiley-Interscience Publication, 1977.
[4] S. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons, Oxford University Press.
[5] D. McMahon, Quantum Computing Explained, Wiley Interscience, 2007.
Argomenti | Riferimenti testi | |
---|---|---|
1 | Dualismo onda-particella | [1,2,3] |
2 | Meccania Quantistica e applicazioni illustrative | [2,3] |
3 | Circuiti Quantistici | [4] |
4 | Tecnologie Quantistiche | [5] |
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze. È possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del proprio Dipartimento.
E' a disposizione nel materiale didattico del corso una raccolta di esercizi di esame.
Durante la prova orale saranno formulate domande sulla prova scritta, e domande che, prendendo spunto dall'esposizione dell'argomento, possono spaziare su tutto il programma svolto.
L'elaborato sostitutivo dell'orale consiste in un calcolo, da effettuare generalmente con l'ausilio di software dedicato, su un argomento relativo al corso. Alcuni esempi sono i seguenti: