1. Conoscenza e comprensione - Knowledge and understaning: Lo Studente sarà in grado di comprendere e assimilare le definizioni ed i principali risultati dell’analisi matematica di base per funzioni di più variabili reali, necessari per la trattazione e modellizzazione dei problemi derivanti dalle scienze applicate.
2. Capacità di applicare conoscenza e comprensione - Applying Knowledge and understaning: Lo Studente sarà in grado di acquisire un appropriato livello di autonomia nella conoscenza teorica e nell’utilizzo degli strumenti analitici di base. Il corso prepara allo studio delle serie di Fourier ed alle trasformate di Fourier e Laplace.
3. Autonomia di giudizio - Making judgements: Capacità di riflessione e di calcolo. Capacità di applicare le nozioni apprese alla risoluzione di problemi ed esercizi.
4. Abilità comunicative - Communication skills: Capacità di comunicare le nozioni acquisite attraverso un linguaggio scientifico adeguato.
5. Capacità di apprendimento - Learning skills: Capacità di approfondimento e di sviluppo delle conoscenze acquisite. Capacità di usare criticamente tabelle e strumenti analitici e informatici di calcolo simbolico.
Informazioni per studenti con disabilità e/o DSA
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze.
E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del Dipartimento o al Presidente del Corso di Studi.
L'insegnamento si svolge mediante lezioni frontali
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Informazioni per studenti con disabilità e/o DSA
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze.
E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del Dipartimento o al Presidente del Corso di Studi.
Lo studente deve almeno conoscere il concetto di limite di una funzione reale di una variabile reale e saper differenziare ed integrare una funzione reale di una variabile reale.
Fortemente consigliata
Struttura del corso della prima parte:
8 CFU - 61 ore totali
49 di lezione frontale
12 di esercitazione
N.B.: Gli aromenti contrassegnati con un asterisco devono essere considerati saperi minimi irrinunciabili.
1. Successioni e Serie di Funzioni. *Successioni di funzioni reali di variabile reale. *Serie di funzioni. *Convergenza puntuale, uniforme e totale. Teoremi di continuita', di integrazione per serie e di derivazione per serie (solo enunciati). *Serie di potenze nel campo reale. *Raggio di convergenza. Teoremi di D'Alembert e di Cauchy--Hadamard. *Raggio di convergenza della serie derivata. Teoremi di derivazione ed integrazione per serie di potenze (solo enunciati). *Serie di Taylor. *Criterio per la Sviluppabilita' in serie di Taylor. *Sviluppi in serie notevoli.
2. Funzioni reali di due o piu' variabili reali. Elementi di topologia in R^2 e R^3. Insiemi limitati. Aperti connessi. *Limiti e continuita'. Teorema di Weierstrass. *Derivate parziali. Derivate successive. *Teorema di Schwartz (solo enunciato). *Gradiente. *Differenziabilita'. *Differenziabilita' e continuita'. Teorema del differenziale. *Funzioni composte. Teorema di derivazione delle funzioni composte. *Funzioni a gradiente nullo in un connesso. *Estremi relativi. Condizioni necessarie e condizioni sufficienti per un estremo relativo.
3. Integrali curvilinei e forme differenziali in R^n. *Curve regolari. Vettore tangente e vettore normale di una curva regolare in un punto. *Rettificabilita'. *Lunghezza di una curva regolare. Curve orientate. Ascissa curvilinea. Integrale curvilineo di una funzione. *Forme differenziali. *Integrale curvilineo di una forma differenziale. *Forme differenziali esatte. *Teorema di integrazione delle forme differenziali esatte. *Caratterizzazione delle forme differenziali esatte. *Potenziale di una forma differenziale. *Forme differenziali chiuse. Forme differenziali in un rettangolo. *Forme differenziali in un aperto semplicemente connesso di R^2 e di R^3.
4. Cenni sulle serie di Fourier. Polinomio trigonometrico. Serie trigonometrica. Convergenza in L^2 di una serie di Fourier.
[1] Bramanti, C. Pagani, S. Salsa, Analisi Matematica due, Zanichelli.
[2] G. Di Fazio - P. Zamboni, Analisi Matematica Due, seconda edizione, Ed. Monduzzi.
[3] N. Fusco, P. Marcellini, C. Sbordone, Analisi Matematica due, Liguori Editore.
[4] M.Bramanti, Esercitazioni di Analisi Matematica 2,
Argomenti | Riferimenti testi | |
---|---|---|
1 | Argomento 1. | [1, 2] |
2 | Argomento 2. | [1,2] |
3 | Argomento 3. | [1,2] |
4 | Argomento 4. | [1,2] |
1. Viene somministrata una sola prova in itinere scritta (denominata prova o sezione A) composta da quesiti teorici e pratici concernenti la parte di programma trattata fino ad una data concordata
2. L'esame finale consiste in un elaborato scritto suddiviso in due sezioni: A (con gli argomenti trattati fino alla prova in itinere) e B contenente quesiti pratici e teorici concernenti la parte del programma trattato successivamente alla prova A
3. Il superamento della prova in itinere permette allo studente di essere esonerato dallo svolgere i quesiti della sezione A nell’esame finale (aumentando, quindi, il tempo a propria disposizione negli appelli del corrente Anno Accademico)
4. Possono accedere all'esame finale anche coloro che non hanno superato la prova in itinere, ma in questo caso dovranno svolgere sia i quesiti della sezione A sia i quesiti della sezione B dell'esame finale
5. I benefici del superamento della prova in itinere restano validi fino al termine della terza sessione di esami del corrente Anno Accademico.
Di norma i voti verranno assegnati secondo il seguente schema
- non approvato: lo studente non ha acquisito i concetti di base e non è in grado di svolgere gli esercizi.
- 18-23: lo studente dimostra una padronanza minima dei concetti di base, le sue capacità di esposizione e di collegamento dei contenuti sono modeste, riesce a risolvere semplici esercizi
- 24-27: lo studente dimostra una buona padronanza dei contenuti del corso, le sue capacità di esposizione e di collegamento dei contenuti sono buone, risolve gli esercizi con pochi errori
- 28-30 e lode: lo studente ha acquisito tutti i contenuti del corso ed è in grado di esporli compiutamente e di collegarli con spirito critico; risolve gli esercizi in modo completo e senza errori.
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere. In tal caso, la durata della prova scritta potrebbe essere soggetta a variazione.
Informazioni per studenti con disabilità e/o DSA
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze.
E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del Dipartimento o al Presidente del Corso di Studi.
Forme differenziali (knowledge and understanding, applying knowledge and understanding)
Relazione tra derivabilita' e differenziabilita' per una funzione di due variabili (knowledge and understanding, applying knowledge and understanding).
Estremi condizionati di una funzione (knowledge and understanding, applying knowledge and understanding).