Nota: Questo insegnamento è erogato in lingua inglese
The course provides an integrated and modern approach to the design and development of intelligent systems, by resorting to state of art technologies and methods from the fields of machine learning, knowledge representation, natural computation, logic and automated reasoning to solve typical and topical problems in application scenarios such as: business intelligence, decision-making support, human-computer interaction. The course provides the theoretical foundations of artificial cognitive systems, but it is essentially practical and application oriented. The students will gather hands-on experience on frameworks and libraries such as PYTORCH for deep learning; on languages supporting the development of semantic web and logic programming applications.
Learning objectives:
Knowledge and understanding
Applying knowledge and understanding
Making judgements
Communication skills
Learning skills
The course involves frontal lessons, laboratories, and seminars.
Should teaching be carried out in mixed mode or remotely, it might be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.
Knowledge of a programming language (any). Knowledge of linear algebra. Good software developments skills are not mandatory, but are a definite asset.
Strongly recommended. Attending and actively participating in the classroom activities will contribute positively towards the overall assessment of the oral exam.
Part 1: Knowledge Representation, Reasoning, and Semantic Technologies
Part 2: Machine learning and knowledge discovery from large scale multimedia data
Part 3: Autonomous agents and the NAO humanoid robotic platform
Selected chapters from the following resources:
Argomenti | Riferimenti testi | |
---|---|---|
1 | Introduction to cognitive computing and artificial intelligence from an historical perspecitve. The intelligent agent paradigm. Classic AI and Knowledge-Based Systems. The problem of Knowledge Representation. Cognitive architectures | 2, 6 |
2 | Reasoning: deductive and inductive reasoning; reasoning with uncertainty; case-based reasoning. | 2,6 |
3 | First order logic and logic programming. Fuzzy logic and the computing with words approach. Bayesian Logic and Bayes Networks | 2,6 |
4 | Problem solving: search strategies and optimization; solving optimization problems with evolutionary programming | 2,6 |
5 | The Semantic Web: The RDF Data Model. OWL. Ontology Engineering. Examples in Protege. The SPARQL query language. Reasoners. Other Semantic Web Technologies and Applications. Linked data. | 5,6 |
6 | Introduction to machine learning. Supervised learning: Regression, Support Vector Machines, Decision trees, KNN. Applications of supervised and unsupervised clustering. | 3 |
7 | Neural models: networks, model design, backpropagation, Gradient descent. Model capacity, overfitting and underfitting, regularization. | 3,6 |
8 | Deep Learning: tensors, deep learning frameworks, data augmentation, training strategies. The PYTORCH framework and first examples. | 4 |
9 | Convolutional neural networks (CNN). Architectures, convolutions and pooling layers. Case studies. Applications to computer vision and multimedia analysis | 4, 6 |
10 | Recurrent Neural networks (RNN), Long Term Short Term Memory (LSTM). Autoencoders. GANs and CGANs. Case studies. | 4 |
11 | Knowledge discovery from data: the general data mining process, model construction and testing, performance evaluation (metrics and crossvalidation). Available cognitive services and API | 3,6 |
12 | Decision making and the design of decision support systems. Applications: recommender systems and business intelligence. AI in medicine and heathcare | 3,6 |
13 | Theories of perception, action and interaction. Interactive autonomous agents. Human-robot interaction. The challenges of multimodal interaction. | 1 |
The competences to be developed by the students will be tested by an oral exam that will consist of the discussion of a project work (70% of the final grade) and of 3 questions on key concepts and methodologies covered in the course (30% of the grade). Assessment criteria include: depth of analysis, adequacy, correctness and originality of the design solutions to the project work, ability to justify and critically evaluate the technological solutions adopted in the project/homeworks, clarity.
Examples of questions and projects are available in Studium