AGRICOLTURA, ALIMENTAZIONE E AMBIENTE (Di3A)Scienze e tecnologie per la ristorazione e distribuzione degli alimenti mediterranei Anno accademico 2023/2024

9793823 - MATEMATICA

Docente: DANIELA FERRARELLO

Risultati di apprendimento attesi

Il corso ha un duplice obiettivo: da un lato intende fornire strumenti di calcolo di base, utili per le discipline di indirizzo; dall’altro intende formare o consolidare l’attitudine al ragionamento e alla risoluzione di problemi, attività tipiche di una educazione matematica e di utilità trasversale.

Si partirà sempre da un problema pratico per poi fornire le conoscenze matematiche utili alla risoluzione del problema posto.

Le esercitazioni saranno volte, in modo particolare, a sviluppare l'attitudine a risolvere problemi. 

Risultati di apprendimento attesi (RAA) secondo i descrittori di Dublino:

a. Conoscenze e capacità di comprensione: conoscenza di funzioni, goniometria e trigonometria, calcolo differenziale, cenni di statistica.

b. Conoscenza e capacità di comprensione applicate: saper operare con le funzioni, saper interpretare grafici di funzioni, saper operare con i fondamenti della goniometria, saper interpretare un numero elevato di dati.

c. Autonomia di giudizio: saper dare una interpretazione matematica di problemi reali, saper dedurre informazioni relative a problemi reali a partire dai dati matematici, saper dare giudizi su fatti reali a partire da considerazioni matematiche. 

d. Abilità comunicative: saper comunicare in modo rigoroso i concetti matematici studiati, saper comunicare in modo efficace i significati matematici oggetto di studio.

e. Capacità di apprendere: riuscire a studiare e comprendere sia in gruppo che in autonomia, riuscire a collegare tra loro argomenti trattati durante il corso, cogliere connessioni tra gli argomenti matematici trattati e altre discipline (transfer laterale), riuscire comprendere anche argomenti matematici più complessi non trattati durante il corso (transfer verticale).

Modalità di svolgimento dell'insegnamento

Il corso prevede un numero di ore di esercitazioni doppio rispetto al numero di lezioni frontali, per la precisione 42 ore di esercitazioni e 21 di lezioni frontali, per un totale di 63 ore.

Qualora il corso sarà fruito in modalità mista (a distanza – in presenza) le lezioni in presenza saranno dedicate prevalentemente alle esercitazioni pratiche (RAA b.).

I concetti matematici verranno introdotti a partire da problemi reali (RAA c. ed e.) mediante un approccio visivo e pratico, anche utilizzando software ad alto impatto didattico (RAA a. e b.), per poi arrivare a un vero e proprio formalismo (RAA d.), tramite lezioni partecipate (RAA d.).

Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.

Informazioni per studenti con disabilità e/o DSA

A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze.

E' possibile rivolgersi anche alla docente referente CInAP (Centro per l’Inclusione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del nostro Dipartimento, prof. Anna De Angelis.

Prerequisiti richiesti

Requisiti culturali di matematica di base indispensabili:

Frequenza lezioni

La frequenza al corso è fortemente consigliata, soprattutto per le esercitazioni, che coinvolgeranno attivamente gli studenti, favorendo il loro apprendimento.

Verranno rilevate le presenze, solo per fini statistici e di valutazione del corso.

Contenuti del corso

INTRODUZIONE 
Cos’è un modello matematico 

FUNZIONI 
Introduzione al concetto di funzione: funzioni reali a variabile reale. Funzioni iniettive. Funzioni crescenti e decrescenti. Funzioni pari e dispari. Funzioni invertibili. Funzioni composte.  
Rette come funzioni lineari. Rette parallele agli assi cartesiani.  Rette per l’origine. Coefficiente angolare e intercetta. Equazione generica della retta.  
Funzioni quadratiche: parabole. Funzioni cubo e funzioni cubiche. Iperboli. Funzioni radice.
Funzioni esponenziali. Logaritmi.  Il numero e e il logaritmo naturale. 
Funzioni logaritmiche.  
GONIOMETRIA, TRIGONOMETRIA E FUNZIONI GONIOMETRICHE.
Radianti, lunghezza di un arco. Circonferenza goniometrica. Funzione seno e coseno: seno e coseno di archi noti (30°, 45°, 60°, 90°, 180°, archi associati). Prima relazione fondamentale della goniometria.  Funzione tangente. Seconda relazione fondamentale della goniometria. 

Seno, coseno e tangente come funzioni reali di variabile reale.  

Trigonometria applicata ai triangoli rettangoli: Primo e secondo teorema di triangoli rettangoli e loro applicazioni.

Cenni di trigonometria applicata a triangoli qualsiasi: Area di un triangolo qualsiasi. Teorema della corda. Teorema dei seni. Teorema del coseno. 
LIMITI  
Intorni di un punto. Funzioni asintotiche. Definizione di limite finito per x che tende a un valore finito. Definizione unitaria di limite. Limiti destri e sinistri. Calcolo dei limiti e forme indeterminate. Confronto tra infiniti e gerarchia degli infiniti. 
DERIVATE 
Significato geometrico di derivata in un punto: limite del rapporto incrementale. Funzione derivata. Derivate elementari. Estremi di una funzione: teorema di Fermat (solo enunciato). 
CENNI DI STATISTICA

La statistica descrittiva. Campione, dati statistici. Rappresentazione di dati statistici. Indici di posizione centrale: media aritmetica, mediana, media ponderata. Quartili, decili e percentili. Indici di dispersione: deviazione standard.

Cenni sulla correlazione. 

Testi di riferimento

[1] Dario Benedetto, Mirko Degli Esposti, Carlotta Maffei. Matematica per scienze della vita. Terza edizione

Casa Editrice Ambrosiana. Distribuzione esclusiva Zanichelli.

[2] Daniela Ferrarello. Mate-pratica: Matematica utile nelle scienze agro-alimentari. Federica Web Learning.

È disponibile sulla piattaforma Federica Web Learning, un MOOC (Massive Open On-line Course) dal titolo "Mate-pratica: Matematica utile nelle scienze agro-alimentari", realizzato dalla prof.ssa Daniela Ferrarello, fruibile on-line in modalità asincrona, che copre buona parte degli argomenti trattati durante il corso. 

Per iscriversi gratuitamente accedere al corso dalla pagina https://lms.federica.eu/enrol/index.php?id=704 e usare il codice Ferrarello1

Programmazione del corso

 ArgomentiRiferimenti testi
1FunzioniDa [1]: Cap. 4.1; Cap. 4.2. Da [2]: Lezione 1
2Funzioni monotòneDa [1]: Cap. 4.3.  Da [2]: Lezione 2
3Funzioni lineariDa [1]: Cap. 5.1. Da [2]: Lezione 3
4Funzioni potenzaDa [1]: Cap. 5.2; Cap. 5.3.  Da [2]: Lezione 4
5Funzioni esponenzialiDa [1]: Cap. 6.1.  Da [2]: Lezione 5
6Logaritmi e funzioni logaritmicheDa [1]:  Cap. 6.2.  Da [2]:  Lezione 6
7Goniometria e funzioni goniometricheDa [1]:  Cap. 6.3
8LimitiDa [1]: Cap. 7.1; Cap. 7.2; Cap 7.3. Da [2]: Lezione 7
9DerivateDa [1]:  Cap. 8.1; Cap. 8.2; Cap. 8.3. Da [2]:  Lezione 8
10Cenni di statisticaDa [1]:  Cap. 12.1; Cap. 12.2; Cap. 12.3. Cap. 12.5

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

Durante il corso verranno somministrate 2 prove in itinere (scritto con esercizi). 

Modalità per chi si avvale delle prove in itinere: 

Chi totalizza un punteggio di almeno 18 con prove in itinere può decidere di confermare all'orale il voto dello scritto.

Modalità per chi non si avvale delle prove in itinere:

La prova finale consiste in una prova scritta (con esercizi) e una prova orale. 

La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.

Griglia di valutazione: 

Non idoneo:

Conoscenza e comprensione argomento: Importanti carenze. Significative imprecisioni

Conoscenze applicate: Scarsa capacità di manipolazione degli oggetti matematici.

Autonomia di giudizio: Scarsa o assente capacità di dare giudizi su fatti reali o realistici a partire da considerazioni matematiche.

Abilità comunicative: Carenze nella comunicazione dei significati matematici. Uso assente o improprio del linguaggio matematico.

Capacità di apprendere: Scarsa capacità di collegare tra loro argomenti studiati. Scarsa capacità di risolvere problemi.

18-20

Conoscenza e comprensione argomento: Sufficiente. Imprecisioni evidenti.

Conoscenze applicate: Capacità appena sufficiente di manipolazione degli oggetti matematici.

Autonomia di giudizio: Sufficiente capacità di dare giudizi su fatti reali o realistici a partire da considerazioni matematiche.

Abilità comunicative: Sufficiente capacità di comunicare significati matematici. Uso sufficiente di appropriato linguaggio matematico.

Capacità di apprendere: Sufficiente capacità di collegare tra loro argomenti studiati. Sufficiente capacità di risolvere problemi se guidati.

21-23

Conoscenza e comprensione argomento: Buona. Con imprecisioni.

Conoscenze applicate: Capacità di manipolazione degli oggetti matematici.

Autonomia di giudizio: Capacità di dare giudizi su fatti reali o realistici a partire da considerazioni matematiche.

Abilità comunicative: Capacità di comunicare significati matematici. Uso appropriato del linguaggio matematico.

Capacità di apprendere: Capacità di collegare tra loro argomenti studiati. Capacità di risolvere problemi con una guida parziale.

24-26

Conoscenza e comprensione argomento: Buona. Con poche imprecisioni.

Conoscenze applicate: Buona capacità di manipolazione degli oggetti matematici.

Autonomia di giudizio: Buona capacità di dare giudizi su fatti reali o realistici a partire da considerazioni matematiche.

Abilità comunicative: Buona capacità di comunicare significati matematici. Uso appropriato del linguaggio matematico.

Capacità di apprendere: Buona capacità di collegare tra loro argomenti studiati. Capacità di risolvere problemi in autonomia.

27-29

Conoscenza e comprensione argomento: Ottima. Senza imprecisioni.

Conoscenze applicate: Più che buona capacità di manipolazione degli oggetti matematici.

Autonomia di giudizio: Più che buona capacità di dare giudizi su fatti reali o realistici a partire da considerazioni matematiche e di fare considerazioni matematiche a partire da fatti reali.

Abilità comunicative: Più che buona capacità di comunicare significati matematici. Uso appropriato e rigoroso del linguaggio matematico.

Capacità di apprendere: Più che buona capacità di collegare tra loro argomenti studiati. Capacità di risolvere problemi in piena autonomia.

30-30 e lode

Conoscenza e comprensione argomento: Ottima. Con approfondimenti.

Conoscenze applicate: Ottima capacità di manipolazione degli oggetti matematici. Capacità di risoluzione dei problemi secondo procedure corrette non standard.

Autonomia di giudizio: Ottima capacità di dare giudizi su fatti reali o realistici a partire da considerazioni matematiche e di fare considerazioni matematiche a partire da fatti reali.

Abilità comunicative: Ottima capacità di comunicare significati matematici. Uso appropriato e rigoroso del linguaggio matematico.

Capacità di apprendere: Ottima capacità di collegare tra loro argomenti studiati. Capacità di porre problemi e di risolvere problemi in piena autonomia.

Esempi di domande e/o esercizi frequenti

ESEMPI DI ESERCIZI PER LO SCRITTO

          ESEMPI DI DOMANDE ORALI


English version