Il corso è finalizzato a presentare i principali strumenti metodologici dell’ottimizzazione matematica. Il corso si propone dunque di fornire gli strumenti teorici e risolutivi per studiare situazioni nelle quali un decisore è chiamato ad effettuare la scelta migliore. Particolare enfasi sarà data alla costruzione dei modelli matematici con applicazioni nei settori socio-economico, informatico e ingegneristico. Alla fine del corso lo studente sarà in grado di formulare un modello matematico di un problema reale o realistico, adottare l'opportuno metodo risolutivo ed interpretare la soluzione trovata.
Il corso si propone di fornire le seguenti competenze:
Conoscenza e capacità di comprensione: lo studente acquisirà le conoscenze di base nell’ambito della programmazione lineare e non lineare e della modellizzazione matematica. Sarà quindi in grado di sviluppare modelli matematici di problemi decisionali.
Capacità di applicare conoscenza e comprensione: lo studente saprà applicare metodi numerici per calcolare le soluzioni di problemi decisionali complessi e di interpretare la soluzione, anche utlizzando i più noti software per la programmazione matematica.
Autonomia di giudizio: attraverso esempi concreti, lo studente sarà in grado di elaborare autonomamente soluzioni in grado di risolvere problemi di ottimizzazione di natura aziendale.
Abilità comunicative: lo studente acquisirà la capacità di sostenere una conversazione tecnica e/o di leggere testi su argomenti riguardanti la modellazione di problemi decisionali; potrà inoltre trasmettere la propria esperienza e conoscenza ad altri.
Capacità di apprendimento: lo studente otterrà le capacità adeguate per lo sviluppo e l'approfondimento di ulteriori competenze. Il corso si propone di fornire una preparazione di base ed una autonomia di studio che consenta agli studenti di consultare libri di testo avanzati e riviste specializzate nei settori di ricerca dell'ottimizzazione matematica.
Organizzazione didattica
6 CFU - 48 ore totali
150 ore d'impegno totale
103 ore di studio individuale
35 ore di lezione frontale
12 ore di esercitazione
Le lezioni sono tenute in aula con l'ausilio di una tavoletta grafica. Gli appunti realizzati durante le lezioni sono messi a disposizione degli studenti. Tali appunti sono da interdersi come un supporto allo studio e non sostituiscono in alcun modo i testi di riferimento. Le lezioni frontali teoriche sono accompagnate da esercitazioni svolte nella stessa aula di lezione.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Informazioni per studenti con disabilità e/o DSA.
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze.
E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del nostro Dipartimento.
Nessuno.
Fortemente consigliata.
INTRODUZIONE ALL’OTTIMIZZAZIONE MATEMATICA (6 ore) Modelli e sistemi decisionali. Esistenza delle
soluzioni. Soluzione grafica di un problema di ottimizzazione. Problemi convessi e concavi.
CONDIZIONI DI OTTIMALITA' (15 ore) Direzioni di discesa. Condizioni di ottimalità per problemi non vincolati. Coni, coni tangenti, coni normali. Condizioni di ottimalità per problemi vincolati. Punti regolari. Condizioni KKT. Moltiplicatori di Lagrange. Condizione di ottimalità generalizzata. Punti sella. Dualità lagrangiana. Dualità di Wolfe.
METODI RISOLUTIVI (6 ore) Preliminari sui metodi di ottimizzazione. Classificazione e convergenza dei metodi.
Soluzioni globali e locali. Ottimizzazione non vincolata. Metodi di ricerca unidimensionale. Il metodo del gradiente. Il metodo del gradiente coniugato. Il metodo di Newton. Ottimizzazione vincolata. Il metodo di penalità. Il metodo di barriera logaritmica. Il metodo del Lagrangiano aumentato.
OTTIMIZZAZIONE NON DIFFERENZIABILE (3 ore) Sottodifferenziali. Metodi risolutivi.
OTTIMIZZAZIONE MULTIOBIETTIVO (5 ore) Ottimo secondo Pareto. Frontiera efficiente. Metodi risolutivi.
ESERCITAZIONI (12 ore)
Argomenti | Riferimenti testi | |
---|---|---|
1 | Modelli decisionali | [1], [2], dispense fornite dal docente |
2 | Insiemi e funzioni convesse | [1], [5], [6] ,[7], dispense fornite dal docente |
3 | Coni, coni tangenti e coni normali | [1], [5], [7], dispense fornite dal docente |
4 | Condizioni di ottimalità per problemi non vincolati | [1], [2], [3], [4], [5], [6], dispense fornite dal docente |
5 | Condizioni di ottimalità per problemi vincolati | [1], [2], [3], [4], [5], [6], [7],dispense fornite dal docente |
6 | Dualità | [1], [2], [3], [5], [6], [7] dispense fornite dal docente |
7 | Metodi risolutivi | [2], [4], dispense fornite dal docente |
L'esame finale consiste in una prova orale sui contenuti del corso durante la quale viene richiesta anche la risoluzione di un esercizio numerico. Il voto finale viene stabilito sulla base delle risposte date dal candidato e dello svolgimento dell’esercizio.
Per l’attribuzione del voto si terrà conto: della chiarezza
espositiva, della completezza delle conoscenze, della capacità di
collegare diversi argomenti. Lo studente deve dimostrare di aver
acquisito una conoscenza sufficiente dei principali argomenti trattati
durante il corso, e di essere in grado di svolgere almeno i più semplici
tra gli esercizi assegnati.
Si seguiranno di norma i seguenti criteri:
non approvato: lo studente non ha acquisito i concetti di base e non è in grado di svolgere gli esercizi.
18-23: lo studente dimostra una padronanza minima dei concetti di base, le sue capacità di esposizione e di collegamento dei contenuti sono modeste, riesce a risolvere semplici esercizi.
24-27: lo studente dimostra una buona padronanza dei contenuti del corso, le sue capacità di esposizione e di collegamento dei contenuti sono buone, risolve gli esercizi con pochi errori.
28-30 e lode: lo studente ha acquisito tutti i contenuti del corso ed è in grado di esporli compiutamente e di collegarli con spirito critico; risolve gli esercizi in modo completo e senza errori.
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Direzioni di discesa, coni tangenti, dualità lagrangiana, metodo del gradiente, metodo di Newton, funzioni di penalità.