MATEMATICA E INFORMATICAMatematicaAnno accademico 2022/2023

9793953 - MODELLI MATEMATICI PER L'OTTIMIZZAZIONE

Docente: Patrizia DANIELE

Risultati di apprendimento attesi

 Gli obiettivi del corso di Metodi e Modelli di Ottimizzazione sono i seguenti:

Conoscenza e capacità di comprensione (knowledge and understanding):

Alla fine del corso di Metodi e Modelli di Ottimizzazione, lo studente, avrà acquisito le conoscenze e le capacità di base nell’ambito dell'ottimizzazione e della modellizzazione matematica e dimostrerà di:

Capacità  di applicare conoscenza e comprensione (applying knowledge and understanding):

Le conoscenze teoriche e pratiche acquisite durante il corso permetteranno allo studente di:

Autonomia di giudizio (making judgements):

Lo studente, in virtù della formazione acquisita, anche di tipo analitico-quantitativo, sarà in grado di analizzare ed interpretare criticamente i dati forniti.

Abilità comunicative (communication skills):

Alla fine del corso di Metodi e Modelli di Ottimizzazione lo studente sarà in grado di:

Capacità  di apprendimento (learning skills):

Modalità di svolgimento dell'insegnamento

L'insegnamento verrà svolto mediante lezioni frontali, esercitazioni in aula e presso i laboratori informatici e seminari.

Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.

Informazioni per studenti con disabilità e/o DSA

A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze. E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del nostro Dipartimento, prof. Filippo Stanco. 

Prerequisiti richiesti

Sono richiesti i concetti di base dell'Analisi Matematica I e II (differenziabilità, convessità di insiemi e funzioni, topologia, ...), della Ricerca Operativa (concetto di rete e di disequazione variazionale) e dell'Ottimizzazione (problemi di minimo, sottodifferenziali,...)

Frequenza lezioni

La frequenza è fortemente consigliata

Contenuti del corso

Teoria dei grafi (circa 12 ore):

Digrafi e grafi: definizioni e nozioni preliminari. Rappresentazione mediante matrici. Algoritmo di Kruskal e sua variante. Algoritmo di Dijkstra e sua variante. Algoritmo di Ford. Ordinamento in livelli dei nodi in un digrafo privo di circuiti. Algoritmo di Bellmann-Kalaba. Il problema del commesso viaggiatore.

Derivate generalizzate (circa  10 ore)

Derivate direzionali. Derivate di Gâteaux e di Fréchet. Sottodifferenziali 

Metodi risolutivi (circa 8 ore)

Metodo del sottogradiente, metodo di discretizzazione. 

Modelli su reti (circa 17 ore)

Reti di traffico. Paradosso di Braess. Misura dell'efficienza di una rete.   

Testi di riferimento

  1. L. Daboni, P. Malesani, P. Manca, G. Ottaviani, F. Ricci, G. Sommi, “Ricerca Operativa”, Zanichelli, Bologna, 1975. 
  2. P. Daniele, “Dynamic Networks and Evolutionary Variational Inequalities", Edward Elgar Publishing, 2006.
  3. J. Jahn, "Introduction to the Theory of Nonlinear Optimization", Springer, 1996.
  4. Dispense su STUDIUM

Programmazione del corso

 ArgomentiRiferimenti testi
1Cammini di lunghezza minima e massima1
2Proprietà delle derivate generalizzate3
3Il sottodifferenziale di una funzione e sue proprietà3
4Reti di traffico con vincoli aggiuntivi2
5Misura secondo Latora-Marchiori e secondo Nagurney-Qiang3

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

L'esame finale consiste in una prova orale durante la quale il candidato dimostra di aver assimilato gli argomenti trattati nel corso.

La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.

Informazioni per studenti con disabilità e/o DSA

A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze.

E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata- Servizi per le Disabilità e/o i DSA) del nostro Dipartimento, prof. Filippo Stanco.

Esempi di domande e/o esercizi frequenti

Esempi di domande:

Presentare l'algoritmo per il cammino di lunghezza minima in un grafo.

Presentare il metodo del sottogradiente.

Presentare il metodo di discretizzazione.

Dimostrare le proprietà delle derivate generalizzate.

Confrontare la misura di Latora-Marchiori con quella di Nagurney-Qiang.


English version