Il corso fornisce un'introduzione ai concetti fondamentali della crittografia moderna. Obiettivo del corso sarà definire e costruire adeguati strumenti crittografici quali cifrari, message authentication codes e firme digitali. Cercheremo di capire che proprietà dovrebbero soddisfare tali strumenti, come formalizzare rigorosamente tali proprietà e come costruire schemi che le soddisfano. Ci soffermeremo soprattutto su schemi ampiamente diffusi in pratica, come AES, SHA, HMAC e RSA. In particolare, cercheremo di capire in dettaglio come sono costruiti e che livello di sicurezza garantiscono.
Il corso non prevede moduli di programmazione.
Obiettivi formativi generali dell'insegnamento in termini di risultati di apprendimento attesi.
Le lezioni sono tenute in aula con l'ausilio di slide, rese disponibili agli studenti sulla pagina web del docente (www.dmi.unict.it/catalano/). Le slide non sostituiscono i testi di riferimento, ma, oltre che agevolare la comprensione della lezione, forniscono un dettaglio puntuale sul programma svolto.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Per una adeguata comprensione dei contenuti del corso sono necessari i seguenti prerequisiti.
La frequenza delle lezioni non è obbligatoria ma fortemente consigliata.
1. Introduzione e breve panoramica del corso
Materiale: Cap 1 di [1]
2. Cifrari Storici e One Time Pad. Il cifrario shift cipher. Il cifrario substituition cipher. Crittanalisi di substitution cipher. Perfetta Sicurezza. Subst. Cipher non offre perfetta sicurezza (dimostrazione). One time pad. One time pad offre perfetta sicurezza (dimostrazione). One time pad è ottimo (dimostrazione). Teorema di Shannon (enunciato)
Materiale: Cap 2 di [1] e cap. 2 di [3]
3. Cifrari a Blocchi: AES
Materiale: Cap 3 di [1]
4. Funzioni e permutazioni Pseudo Casuali. Introduzione e definizioni. Applicazioni ai cifrari a blocchi. Qualche esempio. La sicurezza in senso prf implica sicurezza in senso key recovery (dimostrazione). Il paradosso del compleanno.
Materiale: Cap. 4 e Appendice di [1]
5. Cifrari Simmetrici: modi d'operazione. Modo ECB, Modo CBC$, Modi CTR (a stati e randomizzato). Nozione di sicurezza per cifrari simmetrici: IND-CPA. Attacchi a messaggio scelto e attacchi a crittotesto scelto. Prova che un cifrario deterministico non può essere sicuro. Ind-cpa security implica plaintext recovery security (dimostrazione). Indistinguibilità relativamente ad attacchi a crittotesto scelto: IND-CCA security. Ind-cpa security non implica ind-cca security: il caso di CTR$ (dimostrazione)
Materiale: Cap 5 di [1] e Cap 3 di [3]
6. Funzioni Hash.. Resistenza alle collisioni: funzioni universali, funzioni universali unidirezionali, funzioni resistenti alle collisioni. Attacchi generici alle funzioni hash. Attacchi alle funzioni MD4, MD5, SHA1 (cenni). La trasformazione Merkle-Damgard. Cenni su SHA3.
Materiale: Cap 6 di [1] e Appunti
7. Message Authentication. Definizione di sicurezza per MAC. Il paradigma PRF as a MAC. CBC-MAC. Basic CBC-MAC se applicato a messaggi di lunghezza variabile non è sicuro (dimostrazione). (In)sicurezza di CBC-MAC randomizzato. CBC-MAC per messaggi di lunghezza variabile. MAC da funzioni hash: HMAC.
Materiale: Cap 7 di [1] e Cap 4 di [3]
8. Introduzione alla crittografia asimmetrica. Funzioni unidirezionali e funzioni trapdoor. Richiami di teoria dei numeri computazionale. Generalità sui gruppi. Algoritmo di Euclide, teorema cinese del resto. Quadrati residui.
Materiale: Cap 9 di [1], capitoli vari di [2]
9. Primitive Asimmetriche. Il problema del logaritmo discreto su campi finiti. Il problema computazionale Diffie Hellman. Il problema decisionale Diffie-Hellman. Fattorizzazione. La funzione RSA. Cenni su test di primalità. Algoritmo Miller-Rabin. L'algoritmo square and multiply.
Materiale: Cap 10 di [1]. Appunti delle lezioni.
10. Cifrari Asimmetrici. Definizioni di sicurezza per cifrari asimmetrici. Cifrari Asimmetrici. Definizione di sicurezza per cifrari asimmetrici. Il cifrario El Gamal. Il cifrario El Gamal è sicuro (in senso IND-CPA) relativamente all'ipotesi decisional Diffie-Hellman (dimostrazione).
Il cifrario Paillier. Preliminari matematici. Il cifrario Paillier gode della proprietà di omomorfismo additivo (dimostrazione).
Il cifrario RSA-OAEP. Proprietà del cifrario.
Cifrari basati sull'identità: il cifrario Boneh Franklin. Mappe bilineari. Proprietà del cifrario.
Materiale: Cap 11 di [1] Cap 11 di [3] e appunti delle lezioni.
11. Firme digitali. Preliminari. Definizione di sicurezza per firme digitali. Hash and Sign.
Materiale: Cap 12 di [1] Appunti delle lezioni.
12. Advanced Encryption Mechanisms. Fully Homomorphic Encryption. Functional Encryption
Materiale: MAteriale fornito dal docente
[1] M. Bellare, P. Rogaway “Introduction to Modern Cryptography”
[2] V. Shoup A Computational Introduction to Number Theory and Algebra
[3] J. Katz, Y. Lindell “Introduction to Modern Cryptography” CRC press
Argomenti | Riferimenti testi | |
---|---|---|
1 | Cifrari Storici e One Time Pad. Il cifrario shift cipher. Il cifrario substituition cipher. Crittanalisi di substitution cipher. Perfetta Sicurezza. Subst. Cipher non offre perfetta sicurezza (dimostrazione). One time pad. One time pad offre perfetta sicurezza (dimostrazione). One time pad è ottimo (dimostrazione). Teorema di Shannon (enunciato) | Materiale: Cap 2 di [1] e cap. 2 di [3] |
2 | Cifrari a Blocchi: AES | Cap 3 di [1] |
3 | Funzioni e permutazioni Pseudo Casuali. Introduzione e definizioni. Applicazioni ai cifrari a blocchi. La sicurezza in senso prf implica sicurezza in senso key recovery (dimostrazione). | Cap. 4 di [1] |
4 | Cifrari Simmetrici: modi d'operazione. Modo ECB, Modo CBC$, Modi CTR (a stati e randomizzato). Nozione di sicurezza per cifrari simmetrici: IND-CPA. Attacchi a messaggio scelto e attacchi a crittotesto scelto. Prova che un cifrario deterministico non può essere sicuro. Ind-cpa security implica plaintext recovery security (dimostrazione). Indistinguibilità relativamente ad attacchi a crittotesto scelto: IND-CCA security. Ind-cpa security non implica ind-cca security: il caso di CTR$ (dimostrazione) | Cap 5 di [1] e Cap 3 di [3] |
5 | Funzioni Hash.. Resistenza alle collisioni: funzioni universali, funzioni universali unidirezionali, funzioni resistenti alle collisioni. Attacchi generici alle funzioni hash. Attacchi alle funzioni MD4, MD5, SHA1 (cenni). La trasformazione Merkle-Damgard. Cenni su SHA3 | Cap 6 di [1] |
6 | Message Authentication. Definizione di sicurezza per MAC. Il paradigma PRF as a MAC. CBC-MAC. Basic CBC-MAC se applicato a messaggi di lunghezza variabile non è sicuro (dimostrazione). (In)sicurezza di CBC-MAC randomizzato. CBC-MAC per messaggi di lunghezza variabile. MAC da funzioni hash: HMAC. | Cap 7 di [1] e Cap 4 di [3] |
7 | Introduzione alla crittografia asimmetrica. Funzioni unidirezionali e funzioni trapdoor. Richiami di teoria dei numeri computazionale. Generalità sui gruppi. Algoritmo di Euclide, teorema cinese del resto. Quadrati residui. | Cap 9 di [1], capitoli vari di [2] |
8 | Primitive Asimmetriche. Il problema del logaritmo discreto su campi finiti. Il problema computazionale Diffie Hellman. Il problema decisionale Diffie-Hellman. Fattorizzazione. La funzione RSA. Cenni su test di primalità. Algoritmo Miller-Rabin. L'algoritmo square and multiply. | Cap 10 di [1]. |
9 | Cifrari Asimmetrici. Definizioni di sicurezza per cifrari asimmetrici. Cifrari Asimmetrici. Definizione di sicurezza per cifrari asimmetrici. Il cifrario El Gamal. Il cifrario El Gamal è sicuro (in senso IND-CPA) relativamente all'ipotesi decisional Diffie-Hellman (dimostrazione). Il cifrario Paillier. Preliminari matematici. Il cifrario Paillier gode della proprietà di omomorfismo additivo (dimostrazione). Il cifrario RSA-OAEP. Proprietà del cifrario. | Cap 11 di [1] Cap 11 di [3] e appunti delle lezioni. |
10 | Cifrari basati sull'identità: il cifrario Boneh Franklin. Mappe bilineari. Proprietà del cifrario. | Appunti delle lezioni |
11 | Firme digitali. Preliminari. Definizione di sicurezza per firme digitali. Hash and Sign. | Cap 12 di [1] |
12 | Advanced Encryption Mechanisms. Fully homomorphic Encryption. Functional Encryption. | Appunti delle lezioni e materiale fornito dal docente. |
L'esame consiste di una prova scritta ed un colloquio orale. La prova scritta consiste, tipicamente, di 5 domande a risposta aperta.
Per superare la prova scritta è necessario ottenere una valutazione di almeno 18. La prova scritta può essere visionata prima di sostenere la prova orale.
Prove in itinere: Sono previste tre prove in itinere. La prima prova verte, tipicamente, sul concetto di perfetta sicurezza, sui cifrari a blocchi e sulle funzioni e permutazioni pseudocasuali. La seconda prova verte su: cifrari simmetrici, funzioni hash e message authentication. La terza prova copre il resto del programma (crittografia asimmetrica)
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Il voto è attribuito secondo il seguente schema: