SCIENZE BIOLOGICHE, GEOLOGICHE E AMBIENTALIBiologia ambientaleAnno accademico 2023/2024
1015080 - MODELLI MATEMATICI APPLICATI ALL'AMBIENTE
Docente: ANDREA SCAPELLATO
Risultati di apprendimento attesi
Saper costruire e interpretare modelli matematici che descrivono qualitativamente e quantitativamente fenomeni relativi all’ambiente. Saper utilizzare i concetti principali della teoria delle equazioni differenziali ai fini applicativi nel campo biologico, geologico e ambientale. Saper prevedere e giustificare l'evoluzione di semplici fenomeni relativi alle scienze biologiche, geologiche e ambientali, descritti da equazioni differenziali ordinarie.
In particolare, gli obiettivi dell'insegnamento di Modelli matematici applicati all'Ambiente, declinati secondo i descrittori di Dublino, sono i seguenti:
- Conoscenza e capacità di comprensione (Knowledge and understanding): Lo studente apprenderà alcuni basilari concetti di modellistica matematica e svilupperà le capacità di calcolo e di manipolazione dei più comuni modelli matematici di base.
- Capacità di applicare conoscenza e comprensione (Applying knowledge and understanding): Lo studente sarà in grado di applicare le conoscenze acquisite nei processi basilari di modellizzazione matematica di problemi classici della Biologia e delle Scienze Ambientali.
- Autonomia di giudizio (Making judgements): Lo studente sarà stimolato ad approfondire autonomamente le proprie conoscenze e a svolgere approfondimenti sugli argomenti trattati. Sarà fortemente consigliato il confronto costruttivo fra studenti e il confronto costante con il docente in modo che lo studente possa monitorare criticamente il proprio processo di apprendimento.
- Abilità comunicative (Communication skills): La frequenza delle lezioni e la lettura dei libri consigliati aiuteranno lo studente a familiarizzare con il rigore del linguaggio matematico. Attraverso la costante interazione con il docente, lo studente imparerà a comunicare con rigore e chiarezza le conoscenze acquisite, sia in forma orale che scritta. Alla fine del corso lo studente avrà imparato che il linguaggio matematico permette di descrivere con precisione fenomeni delle Scienze Applicate.
- Capacità di apprendimento (Learning skills): Lo studente sarà guidato nel processo di perfezionamento del proprio metodo di studio. In particolare, attraverso opportune ricerche guidate sarà in grado di affrontare autonomamente nuovi argomenti riconoscendo i prerequisiti necessari per la loro comprensione.
Modalità di svolgimento dell'insegnamento
Lezioni frontali.
I risultati esposti durante il corso saranno analizzati e discussi avvalendosi anche di software adeguati.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel Syllabus.
Prerequisiti richiesti
Conoscenze di Matematica Generale (calcolo differenziale e integrale per funzioni reali di una variabile reale, elementi di geometria analitica).
Frequenza lezioni
Obbligatoria (si veda il Regolamento Didattico del Corso di Laurea Magistrale in Biologia Ambientale, Coorte 2023-2024).
Contenuti del corso
- Richiami
e complementi. Richiami
di Calcolo Differenziale e di Calcolo Integrale per funzioni reali di una
variabile reale. Generalità sulle equazioni differenziali ordinarie: definizioni
e teoremi di esistenza e unicità. Generalità sui sistemi di equazioni
differenziali ordinarie. Stabilità. Introduzione ai modelli matematici. Applicazioni
al calcolatore.
- Modelli matematici
per i cambiamenti climatici. I sistemi climatici. Il bilancio energetico
della Terra. La circolazione generale: generalità e analisi energetica. I
cambiamenti climatici: generalità, forcing radiativo e parametro di
sensibilità climatica. Modelli di circolazione generale GMC (General
Circulation Model).
- Modelli
matematici per lo sviluppo urbano. Generalità. Elementi di
teoria degli automi cellulari: nozione di automa cellulare, griglie o reticoli,
intorni, insieme degli stati, regole di evoluzione o di transizione. Il
modello di Greenberg-Hastings. Il modello di White-Engelen.
- Modelli matematici per la dinamica delle popolazioni. Modello di Malthus discreto. Modello di
Malthus continuo. Modello di Verhulst discreto. Modello di Verhulst
continuo e sue generalizzazioni. Studio della stabilità delle soluzioni di
equilibrio dei modelli di Malthus e di Verhulst. Modello di Von Bertalanffy.
- Modelli matematici
per i sistemi ambientali. Modello per la valutazione della qualità
del verde. Modello per l’evoluzione della metastabilità in un sistema
ambientale. Modello per la valutazione della produzione e della
diffusività di energia biologica in un sistema ambientale. Determinazione
dei parametri: determinazione della biopotenzialità territoriale, descrizione
dell’impatto ambientale tra le zone edificate e quelle naturali a media e
alta biopotenzialità, determinazione della percentuale di superficie
abitativa, determinazione della metastabilità di settore e di sistema,
determinazione del parametro di connettività, determinazione del rapporto
tra la somma delle lunghezze delle barriere impermeabili presenti nel
sistema ambientale e il suo perimetro esterno, determinazione del rapporto
tra la somma delle superfici biologicamente inattive dei settori e la
superficie totale dell’ecomosaico.
- Modelli matematici
per le scienze territoriali. Modello di Lotka-Volterra. Modello di
Duffing. Studio della stabilità delle soluzioni di equilibrio dei modelli
di Lotka-Volterra e di Duffing. Modelli di tipo Lotka-Volterra per lo
studio delle interazioni tra gruppi sociali: modelli di cooperazione, modelli
di competizione, modelli preda-predatore.
Testi di riferimento
- M. Abate, Matematica e Statistica. Le basi per le scienze della vita, Quarta Edizione, McGraw Hill (2023).
- S. Albeverio, P. Giordano, A. Vancheri, Metodi e Modelli Matematici per le Dinamiche Urbane, Springer (2021).
- A. Guerraggio, Matematica, Quarta Edizione, Pearson (2023).
- A. Fowler, Mathematical Geoscience, Springer (2011).
- N. Hritonenko, Y. Yatsenko, Mathematical Modeling in Economics, Ecology and the Environment. Second edition, Springer (2013).
- H. Kaper, H. Engler, Mathematics & Climate, SIAM (2013)
- S. Motta, M.A. Ragusa, Metodi e Modelli Matematici, Libreria CULC (2011).
- S. Motta, M.A. Ragusa, A. Scapellato, Metodi e Modelli Matematici. Esercizi e Complementi, Libreria CULC (2013).
- Dispense del Docente.
Programmazione del corso
| Argomenti | Riferimenti testi |
1 | Richiami e complementi | Testo 1, Testo 2, Testo 6, Testo 7, Dispense del Docente. |
2 | Modelli matematici per i cambiamenti climatici | Testo 3 (Cap. 2), Dispense del Docente. |
3 | Modelli matematici per lo sviluppo urbano | Testo 2 (Cap. 4, 5), Dispense del Docente. |
4 | Modelli matematici per la dinamica delle popolazioni | Testo 2 (Cap. 3), Testo 5 (Cap. 6, 7), Dispense del Docente. |
5 | Modelli matematici per i sistemi ambientali | Dispense del Docente. |
6 | Modelli per le scienze territoriali. | Testo 3 (Cap. 8, 9), Testo 5 (Cap. 6), Dispense del Docente. |
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
L’esame consiste di un colloquio sugli argomenti che sono stati oggetto delle lezioni. La valutazione verrà espressa in trentesimi.
Lo studente, a sua scelta, potrà decidere di presentare un elaborato personale riguardante un argomento non trattato nel corso e pertinente con le tematiche del medesimo. Tale elaborato inciderà sulla valutazione finale.
Si sottolinea che l’elaborato di cui sopra non è obbligatorio.
Nota. Informazioni per
studenti con disabilità e/o DSA
A garanzia
di pari opportunità e nel rispetto delle leggi vigenti, gli studenti
interessati possono chiedere un colloquio personale in modo da programmare
eventuali misure compensative e/o dispensative, in base agli obiettivi
didattici ed alle specifiche esigenze.
È possibile
rivolgersi anche al docente referente CInAP (Centro per l’integrazione
Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del Dipartimento di Scienze Biologiche, Geologiche e Ambientali.
Nota. La verifica dell’apprendimento potrà
essere effettuata anche per via telematica, qualora le condizioni lo dovessero
richiedere. In tal caso, la durata della prova scritta potrebbe essere soggetta
a variazione.
Esempi di domande e/o esercizi frequenti
Tutti gli argomenti indicati nella sezione "Contenuti del corso" di questo Syllabus possono essere richiesti in sede d'esame.
English version