ELECTRONICS

ING-INF/01 - 6 CFU - 1° semestre

Docente titolare dell'insegnamento

EGIDIO RAGONESE
Email: egidio.ragonese@unict.it
Edificio / Indirizzo: DIEEI - Viale A. Doria 6, Ed. 3, V Piano Stanza 44
Telefono: 0957382331
Orario ricevimento: http://www.dieei.unict.it/docenti/egidio.ragonese


Obiettivi formativi

Conoscenza e comprensione

Il corso si prefigge di fornire conoscenze di base sui dispositivi elettronici e sui circuiti analogici e digitali in tecnologia CMOS. In particolare, saranno introdotti i principi di funzionamento dei dispositivi elettronici più comuni (diodi, MOS e BJT) e verranno forniti elementi di topologie circuitali in ambito analogico e digitale. Saranno trattate le più comuni configurazioni basate sull’amplificatore operazionale. Durante il corso sono previste esercitazioni numeriche finalizzate al consolidamento delle tematiche trattate durante le lezioni frontali.

Capacità di applicare conoscenza e comprensione

Alla fine del corso lo studente avrà una panoramica dei dispositivi elettronici e delle applicazioni in cui vengono utilizzati e sarà in grado di analizzare e progettare semplici circuiti analogici e digitali.


Modalità di svolgimento dell'insegnamento

L'insegnamento prevede sia lezioni frontali che esercitazioni numeriche, mirate a mettere in pratica, consolidare e ampliare i contenuti teorici e le tecniche di analisi e progettazione sviluppate.

Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.


Prerequisiti richiesti

Conoscenza di elementi di teoria dei circuiti e di elettromagnetismo.



Frequenza lezioni

La frequenza non è obbligatoria ma fortemente consigliata. È obbligatoria l’iscrizione alla piattaforma Studium
che sarà utilizzata per tutte le comunicazioni inerenti lo svolgimento del corso.



Contenuti del corso

  1. Introduzione all’elettronica: Breve storia dell’elettronica. Classificazione dei segnali elettronici. Conversione A/D e D/A. Convenzioni sulle notazioni. Generatori dipendenti. Richiami di teoria dei circuiti (Leggi di Kirchhoff. Partitori. Circuiti equivalenti di Thevenin e Norton). Spettro di frequenza di segnali elettronici. Amplificatori. Esempio: Ricevitore FM.
  2. Elettronica dello stato solido: Materiali dell’elettronica allo stato solido. Modello a legame covalente. Concentrazione intrinseca dei portatori. Legge dell’azione di massa. *Correnti di deriva e mobilità nei semiconduttori. Saturazione della velocità di deriva. Resistività del silicio intrinseco. *Semiconduttori drogati. Concentrazione di elettroni e lacune nei semiconduttori drogati. *Corrente di diffusione. *Corrente totale in un semiconduttore. Modello a bande di energia.
  3. Diodi a stato solido e circuiti a diodi: Diodo a giunzione. *Caratteristica I/V del diodo. *Diodo in polarizzazione inversa, nulla e diretta. Coefficiente di temperatura del diodo. *Breakdown e diodo Zener. Capacità del diodo in polarizzazione diretta ed inversa. Diodo in commutazione. Modello per ampio segnale. *Analisi di circuiti a diodi. Analisi grafica con retta di carico. Analisi con il modello matematico del diodo (resistenza di piccolo segnale). *Analisi a caduta di tensione constante. Circuiti a più diodi. *Raddrizzatore a semionda con carico R, C ed RC (Filtro capacitivo). Raddrizzatore a doppia semionda ed a ponte. *Regolatore di tensione con diodo Zener. Fotodiodi, diodi Schottky, celle solari e diodi emettitori di luce.
  4. Transistori ad effetto di campo: Il condensatore MOS. Regione di accumulazione. Regione di svuotamento. Regione di inversione. MOSFET a canale n (NMOS). *Analisi qualitativa del comportamento i-v del transistore NMOS. *Regione di triodo del transistore NMOS. Resistenza di conduzione. Regione di saturazione del transistore NMOS. *Modello matematico della regione di saturazione. Transconduttanza in saturazione. Modulazione della lunghezza di canale. Effetto body. MOSFET a canale p (PMOS). Simboli circuitali del MOSFET. Capacità del transistore NMOS nella regione di triodo. Capacità nella regione di saturazione. Capacità nella regione di interdizione. *Polarizzazione del MOSFET. *Polarizzazione con rete a 4 resistori. Analisi basata sul metodo della retta di carico.
  5. I circuiti digitali: Porte logiche ideali. *Definizione dei livelli logici e dei margini di rumore. Livelli logici. Margini di rumore. Criteri di progetto per una porta logica. Risposta dinamica di una porta logica. *Tempi di salita e di discesa. *Ritardo di propagazione. Prodotto ritardo-potenza. Richiami di algebra booleana. Circuiti logici CMOS. *Caratteristiche statiche dell’invertitore CMOS. Caratteristica di trasferimento dell’invertitore CMOS. *Porte logiche NOR e NAND CMOS, Porte logiche CMOS complesse. Circuiti di buffer. Ritardo di un circuito disaccoppiatore (buffer). Numero ottimo di stadi. Latch bistabile. *Flip-flop SR. *Flip-flop JK. *Flip-flop T. Flip-Flop race condition. Il latch di tipo D a porte di trasmissione. *Flip-flop master-slave. *Flip-Flop edge-triggered. Registri e contatori. Memorie ad accesso casuale (RAM). *La cella di memoria a sei transistori (6-T). Memorie dinamiche (DRAM). *La cella di memoria a un transistore. Memorie a sola lettura (ROM). Memorie non volatili (EEPROM). *Memorie flash.
  6. Amplificatori operazionali: Esempio di sistema elettronico analogico. Amplificazione. Guadagni di tensione, di corrente e di potenza. Rappresentazione del guadagno in decibel. L’amplificatore differenziale. Caratteristica di trasferimento di tensione dell’amplificatore differenziale. Guadagno (di tensione) differenziale. Amplificazione dei segnali. Modello dell’amplificatore differenziale. L’amplificatore operazionale ideale. *Ipotesi per l’analisi degli amplificatori operazionali ideali. *L’amplificatore invertente. *L’amplificatore di transresistenza. *L’amplificatore non invertente. *L’amplificatore a guadagno unitario o inseguitore di tensione (Buffer). *Amplificatore sommatore. *Amplificatore sottrattore. Filtri attivi passa-basso e bassa-alto. *Integratore. *Derivatore. Nonidealità. Guadagno di modo comune. CMRR. Resistenze di ingresso e di uscita. Offset. Prodotto banda-guadagno. Slew rate.
  7. Modelli di piccolo segnale e amplificatori a singolo stadio: Il transistore come amplificatore. Condensatori di accoppiamento e di bypass. Utilizzo dei circuiti equivalenti DC e AC. *Modello per piccolo segnale del diodo. *Modello per piccolo segnale del transistore ad effetto di campo. *Guadagno di tensione intrinseco del MOSFET. *L’amplificatore a source comune (CS) (guadagno di tensione a centro banda, resistenze di ingresso e di uscita). Dissipazione di potenza ed escursione del segnale. Classificazione degli amplificatori. *Applicazione e prelievo del segnale (configurazioni CS, CD, CG). *Configurazione CS con resistenza di degenerazione. Amplificatori multistadio accoppiati in AC.
  8. Specchi di corrente: *Analisi DC dello specchio di corrente MOS. *Modifica del rapporto di riflessione per lo specchio di corrente MOS. Specchio di corrente cascode.
  9. Risposta in frequenza: *Risposta in frequenza degli amplificatori, guadagno a centro banda, frequenza di taglio inferiore (fL), frequenza di taglio superiore (fH). *Stima della frequenza di taglio inferiore con il metodo delle costanti di tempo in cortocircuito. Stima della frequenza di taglio inferiore per le configurazioni di amplificatore CS, CG, CD. *Modello in alta frequenza per il MOSFET. *Frequenza di transizione fT. Dipendenza di fT dalla lunghezza di canale. *Analisi ad alta frequenza dell’amplificatore source comune. *L’effetto Miller. *Stima della frequenza di taglio superiore con il metodo delle costanti di tempo a circuito aperto. Risposta in frequenza di un amplificatore CS.
  10. Transistori bipolari: Nozioni di base sul transistore bipolare.


Testi di riferimento

1. Jaeger-Blalock, Microelettronica Ed. Mc-Graw-Hill, V Edizione.

2. Sedra - Smith, Microelettronic circuits, Oxford Univerity press.


Altro materiale didattico

Il materiale messo a disposizione è costituito da: lucidi delle lezioni, articoli di approfondimento, datasheets, e altro. Esso è disponibile sulla Piattaforma Studium (http://studium.unict.it)



Programmazione del corso

 ArgomentiRiferimenti testi
1Introduzione all'elettronica: Breve storia dell'elettronica. Classificazione dei segnali elettronici. Conversione A/D e D/A. Convenzioni sulle notazioni. Generatori dipendenti. Richiami di teoria dei circuiti (*Leggi di Kirchhoff. *Partitori. *Circuiti equivalenti di Thevenin e Norton). Spettro di frequenza di segnali elettronici. Amplificatori. Esempio: Rivevitore FM.1, cap.1 
2Elettronica dello stato solido: Materiali dell'elettronica allo stato solido. Modello a legame covalente. Concentrazione intrinseca dei portatori. Legge dell'azione di massa. *Correnti di deriva e mobilità nei semiconduttori. Saturazione della velocità di deriva. Resistività del silicio intrinseco. *Semiconduttori drogati. Concentrazione di elettroni e lacune nei semiconduttori drogati. *Corrente di diffusione. *Corrente totale in un semiconduttore. Modello a bande di energia.1, cap. 2 
3Diodi a stato solido e circuiti a diodi: Diodo a giunzione. *Caratteristica I/V del diodo. *Diodo in polarizzazione inversa, nulla e diretta. Coefficiente di temperatura del diodo. *Breakdown e diodo Zener. Capacità del diodo in polarizzazione diretta ed inversa. Diodo in commutazione. Modello per ampio segnale. *Analisi di circuiti a diodi. Analisi grafica con retta di carico. Analisi con il modello matematico del diodo (resistenza di piccolo segnale).1, cap.3 
4*Analisi a caduta di tensione constante. Circuiti a più diodi: *Raddrizzatore a semionda con carico R, C ed RC (Filtro capacitivo). Raddrizzatore a doppia semionda ed a ponte. *Regolatore di tensione con diodo Zener. Fotodiodi, diodi Schottky, celle solari e diodi emettitori di luce.1, cap.3 
5Transistori ad effetto di campo: Il condensatore MOS. Regione di accumulazione. Regione di svuotamento. Regione di inversione. MOSFET a canale n (NMOS). *Analisi qualitativa del comportamento i-v del transistore NMOS. *Regione di triodo del transistore NMOS. Resistenza di conduzione. Regione di saturazione del transistore NMOS. *Modello matematico della regione di saturazione. Transconduttanza in saturazione. 1, cap.4 
6Modulazione della lunghezza di canale. Effetto body, MOSFET a canale p (PMOS). Simboli circuitali del MOSFET. Capacità del transistore NMOS nella regione di triodo. Capacità nella regione di saturazione. Capacità nella regione di interdizione. *Polarizzazione del MOSFET. *Polarizzazione con rete a 4 resistori. Analisi basata sul metodo della retta di carico.1, cap.4 
7Introduzione all’elettronica digitale.1, cap.6 
8Porte logiche ideali. *Definizione dei livelli logici e dei margini di rumore. Criteri di progetto per un porta logica. Risposta dinamica di una porta logica. *Tempi di salita e di discesa. *Ritardo di propagazione. Prodotto ritardo-potenza. Richiami di algebra booleana. Circuiti logici CMOS. *Caratteristiche statiche dell'invertitore CMOS. Caratteristica di trasferimento dell'invertitore CMOS. *Porte logiche NOR e NAND CMOS. Porte logiche CMOS complesse. Buffer, ritardo e numero ottimo di stadi.1, cap.7 
9Memorie MOS e circuiti sequenziali: Latch bistabile. *Flip-flop SR. *Flip-flop JK. *Flip-flop T. Flip-flop race condition. Il latch di tipo D a porte di trasmissione. *Flip-flop master-slave. *Flip-flop edge-triggered. Registri e contatori. Memorie ad accesso casuale (RAM). *La cella di memoria a sei transitori (6-T). Memorie dinamiche (DRAM). *La cella di memoria a un transistore. Memorie a sola lettura (ROM). Memorie non volatili (EEPROM). *Memorie Flash.1, Cap.8, Lucidi di lezione 
10Amplificatori operazionali: Esempio di sistema analogico. Amplificazione. Guadagni di tensione, di corrente e di potenza. Rappresentazione del guadagno in decibel. L'amplificatore differenziale. Caratteristica di trasferimento di tensione dell'amplificatore differenziale. Guadagno (di tensione) differenziale. Amplificazione dei segnali. Modello dell'amplificatore differenziale. L'amplificatore operazionale ideale. *Ipotesi per l'analisi degli amplificatori operazionali ideali.1, cap. 10  
11*L'amplificatore invertente: *L'amplificatore di transresistenza. *L'amplificatore non invertente, *L'amplificatore a guadagno unitario o inseguitore di tensione (Buffer). *Amplificatore sommatore. *Amplificatore sottrattore. Filtri attivi passa-basso e passa-alto. *Integratore. *Derivatore. Nonidealità. Guadagno di modo comune. CMRR. Resistenze di ingresso e di uscita. Offset. Prodotto banda-guadagno. Slew rate.1, cap.10  
12Modelli di piccolo segnale e amplificatori a singolo stadio: il transistore come amplificatore. Condensatori di accoppiamento e di bypass. Utilizzo dei circuiti equivalenti DC e AC. *Modello per piccolo segnale del diodo. *Modello per piccolo segnale del transistore ad effetto di campo. *Guadagno di tensione intrinseco del MOSFET. *L'amplificatore a source comune (CS) (guadagno di tensione a centro banda, resistenze di ingesso e di uscita). Dissipazione di potenza e escursione del segnale.1, cap.13, 14 
13Classificazione degli amplificatori. *Applicazione e prelievo del segnale (configurazioni CS, CD, CG). *Configurazione CS con resistenza di degenerazione. Amplificatori multistadio accoppiati in AC.1, Cap. 13, 14. Lucidi di lezione 
14Specchi di corrente: *Analisi DC dello specchio di corrente MOS. *Modifica del rapporto di riflessione per lo specchio di corrente MOS. Specchi di corrente cascode.1, cap.16 
15Risposta in frequenza: *Risposta in frequenza degli amplificatori, guadagno a centro banda, frequenza di taglio inferiore, frequenza di taglio superiore. *Stima della frequenza di taglio inferiore con il metodo delle costanti di tempo in cortocircuito. Stima della frequenza di taglio inferiore per le configurazioni di amplificatori CS, CG, CD. *Modello in alta frequenza per il MOSFET. *Frequenza di transizione fT. Dipendenza di fT dalla lunghezza di canale.1, cap.17 
16*Analisi ad alta frequenza dell'amplificatore source comune. *L'effetto Miller. *Stima della frequenza di taglio superiore con il metodo delle costanti di tempo a circuito aperto. Risposta in frequenza di un amplificatore CS.1, Cap.17 
17Nozioni di base sul transistore bipolare1, Cap.5 


Verifica dell'apprendimento


MODALITÀ DI VERIFICA DELL'APPRENDIMENTO

L'esame consiste in una prova orale. La prova orale consta tipicamente di 3 domande. La valutazione finale terrà conto delle conoscenze acquisite, delle competenze (capacità di analisi e utilizzo di strumenti di progettazione), della chiarezza espositiva e della proprietà di linguaggio tecnico. La durata media della prova orale è di 30-40 min.

La verifica dell'apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.


ESEMPI DI DOMANDE E/O ESERCIZI FREQUENTI

Circuiti raddrizzatori a singola o doppia semionda.

Regolatore di tensione.

Cortocircuito virtuale.

Applicazioni degli amplificatori operazionali.

Parametri di piccolo segnale dei transistori MOSFET.

Frequenza di transizione del transistore MOS.

Specchi di corrente.

Risposta in frequenza di un CS.

Porte logiche CMOS.

Latch e flip-flop




Apri in formato Pdf English version