SIGNAL PROCESSING for MULTIMEDIA APPLICATION

ING-INF/03 - 9 CFU - 1° semestre

Docente titolare dell'insegnamento

GIOVANNI SCHEMBRA
Email: schembra@dieei.unict.it
Edificio / Indirizzo: Polifunzionale - Cittadella Universitaria
Telefono: +390957167389
Orario ricevimento: Mercoledì 8.30-9.30, Giovedì 16.00-17.00


Obiettivi formativi

Conoscenza e comprensione dei principali elementi riguardanti l’elaborazione numerica dei segnali per applicazioni multimediali

Acquisire e comprendere gli strumenti fondamentali per trattare matematicamente segnali e sistemi tempo-discreti, anche utilizzando una caratterizzazione nei domini di Fourier e Z.

Sviluppo delle capacità di analisi e progettazione di filtri numerici.

 

Conoscenze applicate e capacità di comprensione delle tecniche oggi all’avanguardia nei sistemi di comunicazioni digitali, anche finalizzate all’applicazione pratica in contesti diversi da quelli usuali

Sviluppo delle competenze necessarie per analizzare un segnale discreto mediante tecniche di stima spettrale e per progettare un sistema lineare tempo-invariante tramite la sua risposta in frequenza, al fine di poter mettere lo studente in condizioni di loro utilizzo anche in futuro e in contesti diversi da quelli trattati nel corso.

Autonomia di giudizio su quanto imparato

Sviluppo di un adeguato grado di autonomia di giudizio nell’individuazione delle caratteristiche dei sistemi lineari tempo-invarianti e degli strumenti utilizzabili per poter effettuare non solo la progettazione di semplici filtri digitali quali quelli trattati a lezione, ma anche di sistemi più complessi quali quelli di manipolazione di segnali audio e video, per i quali è necessaria una maturazione di quanto studiato.

 

Abilità comunicative per la veicolazione a interlocutori eterogenei

Sviluppo della capacità di comunicare efficacemente e con linguaggio tecnico adeguato tematiche relative alla generazione dei segnali multimediali, alla loro elaborazione e alla loro riproduzione.

Capacità di apprendimento in autonomia delle evoluzioni relative agli argomenti trattati a lezione

Sviluppo della capacità di aggiornamento sull’evoluzione scientifica e tecnologica nel settore dell’elaborazione numerica dei segnali per poter approfondire in autonomia le nuove tecniche di filtraggio e manipolazione dei segnali digitali che si affermeranno in futuro, con riferimento anche alle tecnologie emergenti per l’elaborazione di segnali digitali in ambito “Internet of Sound” (IoS).


Modalità di svolgimento dell'insegnamento

Il corso è composto da una parte di teoria (56 ore) e da una parte di esercitazioni di laboratorio (25 ore).

Qualora l'insegnamento venisse impartito in modalità mista o a distanza, potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.


Prerequisiti richiesti

Conoscenze approfondite di teoria dei segnali, e in particolare analisi di Fourier, campionamento di un sengale analogico, risposta in frequenza di un sistema lineare tempo invariante. Caratterizzazione di un sistema lineare analogico.



Frequenza lezioni

Non obbligatoria per le lezioni frontali, seppure fortemente consigliata. Obbligatoria per il laboratorio.



Contenuti del corso

Il corso è organizzato in sei Unità Didattiche Elementari (UDE):

 

 

Argomenti

Riferimenti testi

1

UDE 1. Digitalizzazione dei segnali

*

Campionamento, quantizzazione e codifica. Ricostruzione ideale del segnale in banda base. Campionamento in condizioni non ideali: segnali non limitati in banda; campionamento non istantaneo e compensazione; ricostruzione non ideale e compensazione.

 

Campionamento in banda passante.

 

Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”.

 

Cap. 1, §1.1 – 1.5

 

e diapositive proiettate a lezione

2

UDE 2. Trasformata di Fourier per sequenze e trasformata Z

*

Definizione di Trasformata di Fourier per sequenze e Trasformata di Fourier inversa; Trasformata di Fourier per sequenze canoniche.

Definizione di Trasformata Z, relazione con la Trasformata di Fourier, regione di convergenza, calcolo della trasformata Z per sequenze notevoli. Trasformata Z inversa di funzioni razionali.

 

Convergenza delle Trasformate di Fourier e Z. Trasformata Z inversa di funzioni non razionali.

 

Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”.

 

Cap. 1, §1.6 – 1.10

Cap. 2

 

e diapositive proiettate a lezione

3

UDE 3. Sistemi a tempo-discreto

*

Sistemi lineari tempo invarianti (LTI): calcolo della sequenza di uscita; causalità; stabilità. Rappresentazioni di un sistema LTI tramite risposta all’impulso, equazione alle differenze finite, funzione di trasferimento, risposta in frequenza. Ritardo di fase e ritardo di gruppo; sistemi non distorcenti. Sistemi passa-tutto; sistemi a fase minima

FIR simmetrici: proprietà (fase lineare, ritardo di fase costante, posizione degli zeri).

 

Sistemi elementari nel tempo-discreto: ritardatore, media mobile, accumulatore o integratore numerico, derivatore numerico. Decimatore o sottocampionatore, interpolatore o sovra-campionatore, multiplexer di sequenze; filtri FIR Half-band; generatore di un segnale analitico discreto.

 

Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”.

 

Cap. 3

 

e diapositive proiettate a lezione

 

4

UDE 4. Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT)

*

DFT e IDFT. Traslazione circolare. Convoluzione circolare e convoluzione lineare. Applicazione al calcolo dell’uscita di un sistema LTI.

FFT. Radice-2 a decimazione nel tempo

Stime spettrali, risoluzione spettrale. Periodogramma.

Convoluzione lineare veloce tra due sequenze e applicazione al calcolo del filtraggio di una sequenza. Algoritmi “Overlap & Add” e “Overlap & Save”.

 

FFT a decimazione in frequenza. FFT inversa.

Scelta della finestra e della sua durata. Correlazione di sequenze.

 

Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”.

 

Cap. 5

 

e diapositive proiettate a lezione

 

5

UDE 5. Progettazione e implementazione di filtri digitali

*

Filtri FIR. Specifiche di progetto. Uso di FIR a fase lineare. Progettazione con il metodo delle finestre. Progetto di FIR passa-basso. Metodo equiripple e criterio di Chebychev, approccio di Parks-McClellan.

Filtri IIR. Metodi di progetto diretto e indiretto. Trasformazione bilineare e invarianza all’impulso.

 

Progetto di finestre ottime.

Progetto di FIR passa-banda, FIR derivatore, FIR di Hilbert. Metodo dei minimi quadrati. Metodo del campionamento in frequenza. Progetto di FIR a fase minima.

Progetto di filtri IIR passa-alto, passa-banda ed elimina banda.

 

Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”.

 

Cap. 6

Cap. 7

 

e diapositive proiettate a lezione

 

6

UDE 6. Elaborazione e compressione di audio, immagini e video digitali

*

Codifica lossless e lossy. Cenni di tecniche di codifica per segnale vocale e codifica delle immagini JPEG ed MPEG.

 

Realizzazione di effetti su immagini digitali in Matlab

 

Appunti forniti dal docente

 

e diapositive proiettate a lezione

 



Testi di riferimento

[Arg] F. Argenti, L. Mucchi, E. Del Re, Elaborazione numerica dei segnali. Teoria, esercizi ed esempi al calcolatore, Mc Graw Hill, 2011.

[Opp] A. V. Oppenheim, R. W. Schafer, Elaborazione numerica dei segnali, Angeli, Milano, 2003

[Pro] J. G. Proakis, D. G. Manolakis, Digital signal processing.


Altro materiale didattico

Il materiale didattico è pubblicato su:



Programmazione del corso

 ArgomentiRiferimenti testi
1UDE 1. Digitalizzazione (campionamento, e quantizzazione) e ricostruzione dei segnali in banda base.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 1, §1.1 – 1.5 e diapositive proiettate a lezione 
2UDE 1. Digitalizzazione (campionamento, e quantizzazione) e ricostruzione dei segnali in banda passante.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 1, §1.1 – 1.5 e diapositive proiettate a lezione 
3UDE 2. Trasformata di Fourier per sequenze e trasformata Z.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 1, §1.6 – 1.10 Cap. 2 e diapositive proiettate a lezione 
4UDE 2. Convergenza delle Trasformate di Fourier e Z. Trasformata Z inversa di funzioni non razionali.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 1, §1.6 – 1.10 Cap. 2 e diapositive proiettate a lezione 
5UDE 3. Sistemi a tempo-discreto, sistemi LTI e FIR simmetriciTesto: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 3 e diapositive proiettate a lezione 
6UDE 3. Ritardatore, media mobile, accumulatore o integratore numerico, derivatore numerico. Decimatore o sottocampionatore, interpolatore o sovra-campionatore, multiplexer di sequenze; filtri FIR Half-band; generatore di un segnale analitico.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 3 e diapositive proiettate a lezione 
7UDE 4. Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT). Stime spettrali. Calcolo dell’uscita di un sistema LTI.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 5 e diapositive proiettate a lezione 
8UDE 4. FFT a decimazione in frequenza. FFT inversa. Scelta della finestra e della sua durata. Correlazione di sequenze.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 5 e diapositive proiettate a lezione 
9UDE 5. Progettazione e implementazione di filtri digitali FIR e IIR. Progettazione con il metodo delle finestre. Metodo equiripple.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 6 Cap. 7 e diapositive proiettate a lezione 
10UDE 5. Progetto di finestre ottime. Progetto di FIR passa-banda, FIR derivatore, FIR di Hilbert. Altri metodi per il progetto di FIR. IIR passa-alto, passa-banda ed elimina banda.Testo: F. Argenti, L. Mucchi, E. Del Re, “Elaborazione numerica dei segnali”. Cap. 6 Cap. 7 e diapositive proiettate a lezione 
11UDE 6. Elaborazione e compressione di audio, immagini e video digitali: caratteri generali. Codifica lossless e lossy. Cenni di tecniche di codifica per segnale vocale e codifica delle immagini JPEG ed MPEG.Appunti forniti dal docente e diapositive proiettate a lezione 


Verifica dell'apprendimento


MODALITÀ DI VERIFICA DELL'APPRENDIMENTO

L’esame è costituito da una prova in itinere non obbligatoria e da una prova orale.


ESEMPI DI DOMANDE E/O ESERCIZI FREQUENTI

A. Digitalizzazione dei segnali

 

1

Conversione analogico-digitale: campionamento, quantizzazione e codifica; campionamento ideale, spettro del segnale campionato, teorema del campionamento, aliasing e ripiegamento dello spettro; rumore di quantizzazione e calcolo dell’SNR; SNR per segnale sinusoidale e per segnale Gaussiano; quantizzazione non uniforme.

2

Campionamento in banda passante: scelta della frequenza di campionamento; campionamento tramite le componenti I/Q; schemi a blocchi di un campionatore in banda passante (metodo tradizionale e metodo numerico).

3

Campionamento in condizioni non ideali: filtro antialising non ideale, segnali non limitati in banda e SNR di distorsione; campionamento non istantaneo e compensazione.

4

Ricostruzione del segnale: ricostruzione ideale (formula di interpolazione cardinale) in banda base e in banda passante; ricostruzione non ideale e compensazione.

 

B. Trasformata di Fourier per sequenze

 

5

Definizioni: TF per sequenze, frequenza e pulsazione normalizzate, periodicità della TF, TF inversa; Sequenze notevoli (Impulso unitario, Impulso rettangolare, Esponenziale unilatera) e loro TF

6

Convergenza della TF per sequenze: definizione, condizione di assoluta sommabilità e convergenza in senso quadratico medio; fenomeno di Gibbs; Sequenze notevoli (Costante, Sinusoidale, Gradino unitario, Segno) e loro TF. Relazione tra il periodo di un segnale tempo-continuo e il periodo della sequenza ottenuta per campionamento [es.: cos(2pf0t) e cos(2pF0n)]

 

C. Trasformata Z

 

7

Definizione, relazione con la Trasformata di Fourier, condizioni di convergenza, regione di convergenza, RoC di sequenze finite, di sequenze monolatere e bilatere.

8

Calcolo della trasformata Z per sequenze notevoli: esponenziale monolatera destra e monolatera sinistra, gradino, coseno monolatero destro, impulso finito

9

Trasformata Z di una convoluzione di sequenze: dimostrazione e applicazione al calcolo della TZ della sequenza monolatera destra

10

Trasformata Z inversa (con il teorema integrale di Cauchy e con il teorema dei residui); calcolo della antitrasformata Z di z/(z-a); antitrasformata Z di funzioni razionali

 

D. Sistemi tempo-discreto

 

11

Sistemi lineari; esempi di sistemi lineari a tempo-discreto. Caratterizzazione di sistemi lineari. Sistemi lineari tempo invarianti (LTI): risposta all’impulso e calcolo della sequenza di uscita (con esempio numerico); causalità; stabilità BIBO; esempi di filtri FIR stabili e IIR stabili.

12

Sistemi lineari elementari: ritardatore, media mobile, accumulatore o integratore numerico, derivatore numerico. Discussione sulla causalità e stabilità delle loro implementazioni.

13

Rappresentazioni di un sistema LTI: risposta all’impulso, equazione alle differenze finite, funzione di trasferimento, risposta in frequenza; differenze tra FIR e IIR sulle diverse rappresentazioni.

14

Esempio di un sistema IIR con implementazione stabile e anticausale, e calcolo dell’equazione alle differenze finite e della risposta all’impulso dalla funzione di trasferimento. Rappresentazione di un sistema IIR come la serie e il parallelo di sistemi stabili

15

Risposta in frequenza: definizione, calcolo della sequenza di uscita, risposta in frequenza di un ritardatore; ritardo di fase e ritardo di gruppo ed esempio sul filtraggio di una somma di due sinusoidi; poli e zeri vicini alla circonferenza unitaria; sistemi non distorcenti (in ampiezza o in fase).

16

FIR simmetrici: proprietà (fase lineare, ritardo di fase costante, posizione degli zeri); Sistemi passa-tutto; sistemi a fase minima

17

Modifiche di sistemi LTI: contrazione in frequenza (es.: applicazione al COMB filter); ribaltamento della risposta in frequenza.
Sistemi lineari tempo-varianti notevoli: decimatore o sottocampionatore, interpolatore o sovra-campionatore, multiplexer di sequenze; ribaltatore in frequenza; filtri FIR Half-band.

18

Ribaltamento della risposta in frequenza (con verifica in Matlab); ribaltamento dell’asse dei tempi (con verifica in Matlab); generatore di un segnale analitico discreto. Realizzazione di H(z^-1) tramite blocchi di inversione temporale (Rev). Generazione del segnale analitico

 

 

E. Discrete Fourier Transform (DFT)

 

19

DFT: motivazione e definizione. IDFT. Calcolo della DFT di una sequenza elementare. Relazione tra DFT, TF e TZ

20

Campionamento della trasformata Z o della Trasformata di Fourier di una sequenza data. Esempio numerico: DFT della sequenza {1, 1, 1, 1, 1} con periodicità 15 e confronto con la TF. Applicazione al calcolo dell’antitrasformata Z di una sequenza

21

Traslazione circolare. Convoluzione circolare e convoluzione lineare. Esempio di calcolo con sequenze a tre valori non nulli. Calcolo della convoluzione lineare dai campioni della convoluzione circolare. Applicazione al calcolo dell’uscita di un sistema LTI.

22

FFT. Radice-2 decimazione nel tempo [NOTA: possibilità di consultazione del grafo in Fig. 3a]. Bit-reverse order. Spiegazione dell'esercizio FFT({2, 1, 4, 6, 5, 8, 3, 9}) usando lo schema in Fig. 3b. Complessità computazionale e confronto con la DFT.

23

Algoritmo diretto e algoritmo ricorsivo per il calcolo della FFT. FFT inversa. FFT radice-2 decimazione in frequenza [NOTA: possibilità di consultazione del grafo in Fig. 4]. Confronto con il metodo radice-2 decimazione nel tempo. Complessità computazionale e confronto con la DFT.

24

Stime spettrali, risoluzione spettrale, scelta della finestra e della sua durata. Periodogramma. Correlazione tra sequenze.

25

Convoluzione discreta lineare veloce tra due sequenze. Convoluzione tra sequenze brevi. Algoritmi “Overlap & Add” e “Overlap & Save”. Commento dello script Matlab FASTCONV.m. Complessità realizzativa. Calcolo numerico del tempo massimo a disposizione per effettuare una moltiplicazione reale nel caso di elaborazione di un segnale reale (di cui è nota la banda) con un filtro FIR di cui è noto il numero di coefficienti.

 

F. Progetto di filtri FIR

 

26

Vantaggi e svantaggi rispetto all’uso di filtri IIR. Specifiche di progetto e obiettivo del progetto di un FIR. Uso di FIR a fase lineare. Limiti dei filtri FIR in base al tipo di simmetria. Metodo delle finestre. Scelta della finestra, della sua durata, e di eventuali altri parametri.

27

Metodo delle finestre. Progetto di finestre ottime. Progetto di FIR passa-banda, FIR derivatore, FIR di Hilbert. Metodo dei minimi quadrati. Metodo del campionamento in frequenza.

28

Specifiche di progetto e obiettivo del progetto di un FIR. Uso di FIR a fase lineare. Limiti dei filtri FIR in base al tipo di simmetria. Metodo equiripple e criterio di Chebychev, approccio di Parks-McClellan.

29

Progetto di FIR a fase minima. Filtro IFIR.

 

Progetto di filtri IIR

 

30

Vantaggi e svantaggi rispetto all’uso di filtri FIR. Definizione, caratteristiche ed esempi di un filtro IIR. Metodi di progetto di filtri IIR (progetto diretto e progetto indiretto). Tecnica della trasformazione bilineare.
Passi per progettare un filtro passa-basso di Butterworth con trasformazione bilineare [NOTA: possibilità di consultazione della Fig. 8]

31

Vantaggi e svantaggi rispetto all’uso di filtri FIR. Definizione, caratteristiche ed esempi di un filtro IIR. Metodi di progetto di filtri IIR (progetto diretto e progetto indiretto). Tecnica della trasformazione bilineare.
Passi per progettare un filtro passa-basso di Chebyshev con trasformazione bilineare [NOTA: possibilità di consultazione della Fig. 8]

32

Vantaggi e svantaggi rispetto all’uso di filtri FIR. Definizione, caratteristiche ed esempi di un filtro IIR. Metodi di progetto di filtri IIR (progetto diretto e progetto indiretto). Tecnica dell'invarianza all'impulso.
Passi per progettare un filtro passa-basso di Butterworth con la tecnica di invarianza all'impulso [NOTA: possibilità di consultazione della Fig. 8]

33

Vantaggi e svantaggi rispetto all’uso di filtri FIR. Definizione, caratteristiche ed esempi di un filtro IIR. Metodi di progetto di filtri IIR (progetto diretto e progetto indiretto). Tecniche di progettazione di filtri passa-alto, passa-banda ed elimina-banda.




Apri in formato Pdf English version