L'obiettivo principale del corso è quello fornire agli studenti strumenti concettuali ed operativi che collegano il più possibile quanto studiato nei corsi precedenti. In particolare si intende offrire agli studenti un approccio all'organizzazione logica di una teoria matematica con particolare riguardo alla geometria, all'aritmetica e alla teoria degli insiemi.
In particolare, il corso si propone i seguenti obiettivi:
Conoscenza e capacità di comprensione (knowledge and understanding): Conoscere gli aspetti fondazionali della matematica in merito alla teoria degli insiemi, all’aritmetica.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding): Applicare il metodo assiomatico alla costruzione dei numeri naturali, e delle geometrie
Autonomia di giudizio (making judgements): Esprimere giudizi sulla bontà della soluzione proposta e valutarne l’efficacia. Acquisizione di capacità critiche negli ambiti della matematica.
Abilità comunicative (communication skills): Capacità di comunicare la propria conoscenza matematica.
Capacità di apprendimento (learning skills): Utilizzare le conoscenze acquisite per acquisire nuove conoscenze.
Le lezioni avranno luogo in incontri bisettimanali. Sarà richiesta una partecipazione attiva degli studenti: le lezioni saranno frontali e partecipate.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma
previsto e riportato nel syllabus.
Informazioni per studenti con disabilità e/o DSA
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze. E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del nostro Dipartimento, prof. Filippo Stanco.
Attilio Frajese e Lamberto Maccioni (a cura di), Gli Elementi di Euclide, UTET, Torino 1970
Sopra gli assiomi aritmetici, Bollettino dell'Accademia Gioenia Di Scienze Naturali in Catania, 1-2, 1908
M. Kline, Storia del pensiero matematico, Vol.1 e 2. Einaudi, 1999
Durante l'anno vengono forniti agli studenti appunti redatti dal docente contenenti gli argomenti trattati durante le lezioni frontali.
Argomenti | Riferimenti testi | |
---|---|---|
1 | L’organizzazione logica di una teoria matematica: teorie assiomatiche; calcolo proposizionale e algebra di Boole; calcolo predicativo. | Note del docente |
2 | Cenni di Fondamenti di geometria: gli “Elementi” di Euclide. | Attilio Frajese e Lamberto Maccioni (a cura di), Gli Elementi di Euclide, UTET, Torino 1970 |
3 | Fondamenti di aritmetica: Assiomi di Peano e assiomi di Pieri | Sopra gli assiomi aritmetici, Bollettino dell'Accademia Gioenia Di Scienze Naturali in Catania, 1-2, 1908 |
4 | Successivi ampliamenti del concetto di numero | Note del docente |
5 | L’infinito matematico: il problema dell’infinito nella matematica greca; il calcolo infinitesimale; concetto di insieme infinito; teoria degli insiemi di Cantor; cardinalità del numerabile e del continuo; confronto di cardinalità; paradossi della teoria degli insiemi; teoria assiomatica degli insiemi; l’assioma della scelta; segmenti di un insieme ben ordinato; il teorema di Zermelo; proposizioni equivalenti all’assioma della scelta. | Note del docenteM. Kline, Storia del pensiero matematico, Vol.1 e 2. Einaudi, 1999 |
L’esame finale consiste in una prova orale.
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Assiomi di continuità;
Numeri secondo Pieri e secondo Peano
Teorie assiomatiche