Il corso introduce allo studio dei sistemi lineari, delle applicazioni lineari, alla ricerca di autovalori di matrici e alla diagonalizzazione di matrici. Si affronta lo studio della geometria lineare, specificatamente rette e piani, delle coniche nel piano e delle quadriche nello spazio.
Risoluzione di equazioni e disequazioni. Trigonometria.
Lo studente è tenuto a frequentare almeno il 70% delle lezioni del corso per poter sostenere le prove in itinere. La frequenza è, comunque, consigliata per sostenere la prova d’esame.
Algebra Lineare:
Geometria:
Le dimostrazioni dei teoremi contrassegnati con * si possono omettere.
* | Argomenti | Riferimenti testi | |
1 | * | Introduzione alla teoria degli insiemi. Introduzione ai campi e spazi vettoriali. Determinante di una matrice. Calcolo del rango e riduzione di una matrice. Risoluzione dei sistemi lineari. Tempo richiesto: 9 ore | Libro di teoria: capitoli 1,3 Libro di esercizi: capitolo 1 |
2 | Operazioni con le matrici. Tempo richiesto: 2 ore | Libro di teoria: capitolo 3 Libro di esercizi: capitolo 1 | |
3 | * | Spazi vettoriali. Generatori e insiemi liberi. Sottospazi. Base e componenti rispetto a una base. Dimensione di uno spazio vettoriale. Tempo richiesto: 9 ore | Libro di teoria: capitolo 2 Libro di esercizi: capitolo 2 |
4 | Somma e intersezione di spazi vettoriali. Estrazione di una base da un sistema di generatori e completamento a base di un insieme libero. Tempo richiesto: 2 ore | Libro di teoria: capitolo 2 Libro di esercizi: capitolo 2 | |
5 | * | Applicazioni lineari e loro assegnazione. Studio di un’applicazione lineare. Calcolo di immagini e controimmagini. Tempo richiesto: 10 ore | Libro di teoria: capitolo 4 Libro di esercizi: capitoli 3,4 |
6 | Matrici di cambio base e matrici simili. Operazioni con applicazioni lineari. Tempo richiesto: 2 ore | Libro di teoria: capitolo 4 Libro di esercizi: capitolo ,5 | |
7 | * | Autovalori, autovettori e autospazi. Polinomio caratteristico. Molteplicità algebrica e geometrica di un autovalore. Endomorfismi semplici. Diagonalizzazione di una matrice. Tempo richiesto: 9 ore | Libro di teoria: capitolo 5 Libro di esercizi: capitolo 6 |
8 | Applicazioni sotto condizione. Restrizioni ed estensioni di applicazioni lineari. Tempo richiesto: 2 ore. | Libro di teoria: capitolo 5 Libro di esercizi: capitoli 7,8 | |
9 | * | Generalità sul calcolo vettoriale. Coordinate cartesiane e coordinate omogenee. Assegnazione di una retta e di un piano e loro equazioni. Punti impropri. Intersezioni. Parallelismo e ortogonalità. Fasci di rette e piani. Distanze. Tempo richiesto: 10 ore | Libro di teoria: capitoli 1, 2, 3 Libro di esercizi: capitolo 1 |
10 | Angoli. Proiezioni ortogonali. Rette bisettrici e piani bisettori. Simmetrie. Luoghi di rette. 3 ore | Libro di teoria: capitoli 1, 2, 3 Libro di esercizi: capitolo 1 | |
11 | * | Coniche e matrici associate. Cambianti di coordinate nel piano, invarianti ortogonali ed equazioni ridotte di una conica. Classificazione delle coniche. Circonferenze. Rette tangenti. Fasci di coniche. Tempo richiesto: 8 ore | Libro di teoria: capitolo 4 Libro di esercizi: capitolo 2 |
12 | Studio completo delle coniche. Coniche sotto condizione. Tempo richiesto: 4 ore. | Libro di teoria: capitolo 4 Libro di esercizi: capitolo 2 | |
13 | * | Quadriche e matrici associate. Quadriche irriducibili. Vertici di una quadrica e quadriche degeneri. Conica all’infinito. Coni e cilindri. Equazioni ridotte di una quadrica. Classificazione delle quadriche non degeneri. Tempo richiesto: 7 ore. | Libro di teoria: capitolo 5 Libro di esercizi: capitolo 3 |
14 | Tangenza. Coniche sezione di una quadrica. Sfere. Tempo richiesto: 2 ore. | Libro di teoria: capitolo 5 Libro di esercizi: capitolo 3 |
La prova d'esame è composta da una prova scritta e una prova orale obbligatoria, cui si accede dopo aver superato la prova scritta (superamento della prova con 12/30).
Sono previste due prove in itinere (durata 2 ore la prima e 3 ore la seconda) durante il corso.
Lo studente è tenuto a frequentare almeno il 70% delle lezioni del corso per poter sostenere le prove in itinere. La frequenza è, comunque, consigliata per sostenere la prova d’esame.
La prima prova in itinere è costituita da esercizi in accordo alle competenze erogate nelle Unità Didattiche 1,2,3,4. Il superamento della prima prova in itinere permette di acquisire fino a 12 (superamento della prova con voto pari a 6).
La seconda prova in itinere è costituita da due parti: una parte di soli esercizi in accordo alle competenze erogate nelle Unità Didattiche 5,6,7, della durata di 2 ore, e una parte scritta di teoria (sull’intero programma), della durata di 1 ora. La partecipazione alla seconda prova è indipendente dalla partecipazione alla prima e dal risultato della prima prova eventualmente sostenuta. Questa seconda prova permette di ottenere un voto massimo di 12 (superamento della prova con voto pari a 6).
La parte scritta di teoria della seconda prova è FACOLTATIVA e riguarda esclusivamente quegli studenti che hanno già superato la prima. In questa parte della prova non si riceve un voto, ma si ritiene solo SUPERATA oppure NON SUPERATA.
Lo studente che abbia superato entrambe le prove in itinere con una votazione di almeno 18 e che abbia superato anche l’ulteriore prova di teoria, può non sostenere la prova orale e ritenere superato l’esame con il voto riportato dalla somma dei due punteggi (dunque, votazione massima 24/30).
Lo studente che abbia superato entrambe le prove in itinere con una votazione di almeno 18, ma che non abbia superato o non abbia sostenuto anche l’ulteriore prova di teoria, deve obbligatoriamente integrare le due prove in itinere con la prova orale da svolgere negli appelli regolari (entro la fine dell'a.a.), per il superamento dell'esame.
Lo studente che abbia superato entrambe le prove in itinere ottenendo una valutazione complessiva inferiore a 18/30 deve integrare le due prove in itinere con la prova orale da svolgere negli appelli regolari (entro la fine dell'a.a.), per il superamento dell'esame.
Lo studente che abbia superato una sola delle due prove in itinere deve integrare la prova in itinere superata con una prova scritta riguardante la parte del programma rimanente. Il superamento di questa prova scritta (che avviene con un voto di 6/15) consente di accedere all'orale, in tal caso obbligatorio.
Non ci sono prove di fine corso.
Esercizi di Algebra Lineare
Esercizi di Geometria