# MEASUREMENT METHODS AND ABSOLUTE DATING TECHNIQUES

FIS/01 - 6 CFU - 1° Semester

PAOLA LA ROCCA

## Detailed Course Content

First part
1) Measurement of a Physical quantity
The scientific method – Physical quantities – Units of measurement – Measurement uncertainty – Estimation of the uncertainty – Absolute and relative uncertainties – How to report uncertainties – Use of tables – – Comparison of two measured numbers – Significant Figures – Graphical representation of the experimental data
2) Propagation of uncertainties
Direct and indirect measurements - Error propagation in sums, differences, products and quotients - Independent uncertainties in a measurement - General formula for error propagation
3) Statistical analysis of random uncertainties
Histograms and distributions - The mean and Standard Deviation – The weighted average - The Gaussian distribution and its properties - The Poisson distribution and its properties
4) Least-squares fitting
Introduction to the least-squares fit - The Linear best-fit – Calculation of the constants A and B - Uncertainties in the constants A and B - Least-squares fits to other curves – Examples and applications
5) The chi-squared test for a distribution
Comparison between theoretical and experimental data distributions - General definition of chi-squared - Degree of freedom and the reduced chi-squared – The chi-squared test - Examples
Second part
1) Basics of Nuclear Physics
The nucleus and its contents - Mass number and atomic number – Isotopes – Abundance of isotopes in nature
Nuclear stability – The radioactivity - The radioactivity decay law –Decay constant, lifetime and half-life - Types of Radioactive Decay – Alpha decay - Beta decay - Gamma decay
3) Dating methods
Introduction to the dating methods - Radiocarbon dating - AMS dating - Potassium-Argon dating - Argon-Argon dating - Uranium-Thorium dating - Fission track dating – Thermoluminescence phenomena and its application in archaeological dating - Electron spin resonance and its use in dating

## Textbook Information

1) J.R. Taylor, “Introduzione all’analisi degli errori”, Zanichelli

2) B.Povh, K.Rith, C.Scholtz, F.Zetsche, “Particelle e Nuclei”, Bollati-Boringhieri

3) W.S.C. Williams, “Nuclear and Particle Physics”, Oxford Science Publications

4) M.J.Aitken, “Science-based Dating in Archeology”, Pearson Education

5) A.Castellano, M.Martini, E.Sibilia, “Elementi di archeometria”, Egea

Open in PDF format Versione in italiano