MAT/03 - 9 CFU - 2° Semester

Teaching Staff


Detailed Course Content

Linear Algebra:

  1. Generalities on set theory and operations. Maps between sets, image and inverse image, injective and surjective maps, bijective maps. Sets with operation, gropus, rings, fields.
  2. Vectors in the ordinary space. Sum of vectors, product of a number and a vector. Scalar product, vector product. Components of vectors and operations with components.
  3. Complex numbers, operations and properties. Algebraic and trigonometric form of complex numbers. De Moivre formula. nth root of complex numbers.
  4. Vector spaces and properties. Examples. Subspaces. Intersection, union and sum of subspaces. Linear independence. Generators. Base of a vector space, completion of a base. Steinitz Lemma*, dimension of a vector space. Grassmann formula*. Direct sum.
  5. Generalities on matrices. Rank. Reduced matrix and reduction of a matrix. Product of matrices. Linear systems. Rouchè-Capelli theorem. Solutions of linear systems. Homogeneous systems and space of solutions.
  6. Determinants and properties. Laplace theorems*. Inverse of a square matrix. Binet theorem*. Cramer thoerem. Kronecker theorem*.
  7. Linear maps and properties. Kernel and image. Injective and surjcetive maps. Isomorphisms. L(V,W) and isomomorphism with k^{m,n}. Study of a linear map. Base change.
  8. Eigenvalues, eigenvectors and eigenspaces of an endomorphism. Characteristic polynomial. Dimension of eigenspaces. Independence of eigenvectors. Simple endomorphisms and diagonalization of matrices.



  1. Linear geometry on the plane. Cartesian coordinates and homogeneous coordinates. Lines and their equations. Intersection of lines. Angular coefficient. Distances. Pencils of lines.
  2. Linear geometry in the space. Cartesian coordinates and homogeneous coordinates. Planes and their equation. Lines and their representation. Ideal elements. Angular properties of lines and planes. Distances. éencils of planes.
  3. Change of coordinates in the plane, rotations and translations. Conics and associated matrices, ortogonal invariants. Reduced equations, reduction of a conic in canonic form. Classification of irreducible concis. Study of equations in canonic form. Circle. Tangent lines. Pencils of conics.
  4. Quadrics in the space and associated matrices. Irreducible concis. Vertices and dengerate quadrics. Cones and cylinders. Reduced equations, reduction in canonic form. Classification of non degenerate quadrics. Sections of quadrics with lines and planes. Lines and tangent planes.


The prooves of the theorem signed with * can be ometted.

Textbook Information

1. S. Giuffrida, A. Ragusa: Corso di Algebra Lineare. Il Cigno Galileo Galilei, Roma, 1998.
2. Lezioni di Geometria. Spazio Libri, Catania, 2000.
3. P. Bonacini, M. G. Cinquegrani, L. Marino. Algebra lineare: esercizi svolti. Cavallotto Edizioni, Catania, 2012.
4. P. Bonacini, M. G. Cinquegrani, L. Marino. Geometria analitica: esercizi svolti. Cavallotto Edizioni, Catania, 2012.

Open in PDF format Versione in italiano