Apprendere le principali metodologie sperimentali per l’analisi dei dati da esperimenti di fisica nucleare.
In riferimento ai cosiddetti Descrittori di Dublino, questo corso contribuisce a acquisire le seguenti competenze trasversali:
Conoscenza e capacità di comprensione:
Capacità di applicare conoscenza:
Autonomia di giudizio:
Abilità comunicative:
1) Lezioni in aula
2) Esercitazioni numeriche
3) Sessioni di analisi dati e simulazioni
Corsi introduttivi di Fisica Nucleare
Conoscenze base di statistica ed elaborazione dei dati
Conoscenze base di informatica
Obbligatoria
Introduction
Energetic regimes for nuclear collisions – Basic phenomenology for heavy ion nuclear collisions – The present status of the experimental facilities in high energy nuclear physics
Reconstruction of collision events
Kinematics of a nuclear collision – The low energy and light particle case – Three-body processes – Multibody collisions – Study of the final state – Kinematical variables in high energy nuclear and particle physics – Rapidity, pseudorapidity, transverse momentum and transverse mass – Transformation of variables – Kinematical acceptance - Reconstruction of decaying particles – Dalitz plots - Invariant mass spectra and identification of decaying particles – Armenteros-Podolanski plot - Background evaluation – Methods and algorithms for background subtraction in high multiplicity events - Event mixing techniques, track rotation, like-sign methods – Event generators for pp and heavy ion collisions – Use of event generators in nuclear physics - Event characterization – Centrality of collision events – Reaction plane and its determination.
High-energy nucleon-nucleon collisions
Basic phenomenology of Nucleon-Nucleon collisions – Particle production – Inclusive experimental distributions – Hard and soft processes – Event generators for nucleon-nucleon collisions – Examples from PITHYA event generator
Heavy ion collisions from intermediate to relativistic energy
Particle multiplicity – Energy density – Excitation energy – Central and peripheral collisions – Global variables - Event centrality determination – Nuclear matter at high density – Multifragmentation – Inclusive and exclusive experiments – Collective flow – Reaction plane – Subthreshold particle production – Phase transitions at intermediate energy – Particle production from intermediate to relativistic energies – Distributions and relative abundances – Rapidity and transverse momentum distributions – Inelasticity – Pion and kaon production – Strangeness production
Ultra-relativistic heavy ion collisions
Nuclear stopping – Energy density – Bjorken estimate – Geometrical description of nuclear collisions – Glauber model – Particle production – Collective effects – Hard probes – Jet quenching – Simulation of high energy nucleus-nucleus collisions – Event generators for heavy ion collisions – Examples from HIJING event generator
Hadronic matter and quark-gluon-plasma
QCD and QGP – The problem of quark deconfinement – Chiral symmetry – Quark matter – Search for experimental evidence of quark matter – Astrophysical aspects – Neutron stars – Strangelets – Links to cosmic ray physics
Signatures of QGP in heavy ion collisions
Dilepton production – Drell-Yann processes – J/Psi suppression – Strangeness production – Multistrange hyperons – Direct photon emission – Intensity interferometry and space-time size of nuclear sources – Event-by-event physics – Correlations and fluctuations
Recent results from high energy nuclear physics
Review of recent results at RHIC and LHC – Main results and perspectives – The upgrade of the LHC experiments and the future at LHC
Particle detectors in high energy nuclear physics
Particle detection in nuclear physics – General properties: operating strategies, signal information, calibration, energy, space and time resolution – Energy measurements – Timing measurements – Geometrical acceptance – Detector efficiency – Simulation techniques for the evaluation of acceptance and efficiency – Basic phenomenology of a nuclear collision - Charged particle multiplicity at low energy, intermediate energy and ultrarelativistic regimes – Individual detectors and multidetectors – Typical examples of multidetectors at intermediate energies – Examples of multidetectors at high energy - Tracking detectors - Vertex detectors – Detectors for particle identification.
Adavanced detection techniques
Recent developments in gas detectors – Drift chambers – Time Projection Chambers - Multigap resistive plate chambers – Development of silicon detectors – Microstrip detectors – Silicon drift detectors – Hybrid and monolithic pixel detectors – Silicon vertex detectors – Radiation damage in silicon detectors – Cerenkov Ring Detectors – Electromagnetic and hadronic calorimeters – Transition radiation Detectors - Scintillation detectors with wavelength shifter fibers – Development in photosensors: Avalanche photodiodes and Silicon photomultipliers.
Useful references for the topics discussed will be provided along the lectures.
Tutto il materiale didattico del corso (lezioni, esercitazioni, tutorial,...) è disponbile sul sito:
lab3ct.altervista.org
| Argomenti | Riferimenti testi | |
| 1 | Un lavoro personalizzato di analisi che utilizzi qualcuno dei metodi illustrati durante il corso |
Presentazione di una tesina scritta che riporti un lavoro di analisi/simulazione condotto con qualcuno dei metodi illustrati durante il corso
Discussione orale
Metodi di simulazione Monte Carlo - SImulazione con package GEANT - Reti neurali - Digital Pulse Processing