FLUID MACHINES DESIGN

ING-IND/08 - 9 CFU - 2° Semester

Teaching Staff

MICHELE MESSINA
Email: mmessina@dii.unict.it
Office: Cittadella Universitaria, Edificio Polifunzionale 6° piano, Viale A. Doria, 6 95125 Catania
Phone: 0957382426
Office Hours: martedì e giovedì 11:00 - 13:00


Learning Objectives

The course is divided into two parts. The first part of the course concerns the design of wind turbines, while the second is devoted to the study of reciprocating internal combustion engines. The course provides the basis for the aerodynamic design of wind turbines (horizontal and vertical axis wind turbines) and the evaluation of their performance. With regard to reciprocating internal combustion engines (ICE) the course provides students with the basis for the design, focusing on key aspects such as Performance Optimization, Engine Cycle Simulation, ICE Combustion, Pollutant Formation and Control. During the course will be carried out numerical simulations on the computer.


Course Structure

Lectures (42 hours) and numerical exercises (45 hours).

Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.

Learning assessment may also be carried out on line, should the conditions require it.



Detailed Course Content

RECIPROCATING INTERNAL COMBUSTION ENGINES

Classification. Maximum efficiency, internal thermodynamic efficiency and organic efficiency.

- Combustion at constant volume and/or constant pressure.

- Feeding air. - Filling in 4-strokes engines: general data, detailed study, analysis of the distribution equipment. Filling in 2-strokes engines: general data, outlines of washing, analysis of the washing process.

- Feeding fuel in spark-ignition engines. General requirements. Elementary carburettor. Injector.

- Feeding fuel in the compression-ignition engines. Requirements in terms of atomization and penetration of the jet. Injection Systems. Common Rail System.

- Biofuels.

- Notes on Supercharging.

- Combustion – General data- Combustion in spark-ignition engines - Octane number. ICE-SI Combustion.

- Combustion in compression-ignition engines . Cetane number.

- Emissions of polluting agents: harmful effects, mechanisms of formation, influence of operation parameters.

- Numerical evaluation of the Heat Release in ICE-SI;

- Numerical evaluation of the Limit Cycle of a ICE-SI;

- Numerical evaluation of ICE pollutants.

-Hybrid vehicles

 

WIND TURBINES DESIGN

Wind turbine technology. Fundamental concept of wind turbine engineering.

Wind turbines mathematical models. Airfoil characterization. Lift and drag coefficient.

Blade Element Momemtum Theory. Wind rotor performance evaluation. Application to Horizontal Axis Wind Turbines and to Vertical Axis Wind Turbines. Power curves. Power and Torque coefficients. Wind Rotor Solidity. Off design performance evaluation.

-Fluid Dynamic Design of an Horizontal Axis Wind Turbine;

-Fluid Dynamic Design of a Vertical Axis Wind Turbine.

 

SUBSONIC WIND TUNNEL DESIGN

Type of wind tunnels.

Wind tunnel components: Test section, diffuser, corners, Fan, Settling chamber. Honeycomb and screens.

Subsonic Wind tunnel design. Power consideration. Section loss coefficients. Energy Ratio. Test section Flow quality.

-Fluid Dynamic Design of a Subsonic Wind Tunnel.



Textbook Information

[1] J.B. Heywood: "Internal combustion engine fundamentals", Mc Graw Hill
[2] G.Ferrari: "Motori a Combustione Interna", Società Editrice Esculapio
[3] Battisti L.: Gli impianti motori eolici, Green Place Energies
[4] Sphera DA, editor. Wind turbine technology: fundamental concepts of wind turbine engineering.
[5] Barlow, Rae, Pope: Low Speed Wind Tunnel Testing. John Wiley & Sons, Inc. Third Edition




Open in PDF format Versione in italiano