CLOUD COMPUTING AND BIG DATA
INF/01 - 6 CFU - 2° semestre

Docente titolare dell’insegnamento
GIUSEPPE PAPPALARDO
Email: pappalardo@dmi.unict.it
Edificio / Indirizzo: Dipartimento di Matematica e Informatica, Blocco 3, Ufficio n. 48, Viale A. Doria 6, Catania
Telefono: 0957383000
Orario ricevimento: http://www.dmi.unict.it/pappalardo/ricevimento.php

OBIETTIVI FORMATIVI

1. **Knowledge and understanding (Conoscenza e capacità di comprensione).** Students will acquire a precise knowledge and understanding of fundamental concepts in the field of cloud computing, chiefly through a guided exploration of the main technological solutions available from the public Cloud, focusing on resources and services oriented to data storage, analysis, visualization and machine learning.

2. **Applying knowledge and understanding (Capacità di applicare conoscenza e comprensione).** Based on the operating knowledge acquired, students will develop an effective "toolset" of practical, application-oriented skills in leveraging the Cloud to cater for the typical needs of a data scientist: i.e. processing large datasets with a view to revealing meaningful patterns and relationships. Cloud implementations of state-of-the-art tools and frameworks like, e.g., MapReduce/Hadoop or TensorFlow, will be employed.

3. **Making judgements (Autonomia di giudizio).** The student will develop the ability to choose the suitable Cloud-based resource for the Data Science scenario of interest, properly estimating the ensuing costs and performance gains, as well as consciously assessing the tradeoffs involved.

4. **Communication skills (Abilità comunicative).** The student will acquire the communication skills required to express and discuss, at a rigorous technical level, the benefits and (mostly cost-related) downsides of the Cloud for Data Science applications. In addition, the student will gain the ability, for presentation purposes, to effectively highlight the features of very large datasets by means of cloud-based visualization services.

5. **Learning skills (Capacità di apprendimento).** Students will become capable of profitably consulting technical documentation concerning Data Science-oriented Cloud services, in order to concretely put them to effective use.

MODALITÀ DI SVOLGIMENTO DELL’INSEGNAMENTO

Lectures will mainly consist in live sessions dealing with using the Cloud for the purposes of data analysis.
and machine learning. These sessions will be carried out by the lecturer and replicated, with suggested
variations, by the students, on available equipment. Laboratory practice aims at enabling students to
refine their understanding of the technologies presented and acquire autonomous operating skills. As a
framework and guidance, lecture notes will be displayed during lectures and shared with students. Notes
will provide a precise record of the material presented, as well as pointers to the required reference
technical documentation.

Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes
with respect to previous statements, in line with the programme planned and outlined in the syllabus.
Learning assessment may also be carried out on line, should the conditions require it.

PREREQUISITI RICHIESTI

Fundamentals of data analysis and machine learning. Basic skills in using a desktop computing
environment and the Web.

FREQUENZA LEZIONI

Attending classes is not mandatory but strongly recommended.

CONTENUTI DEL CORSO

This course aims at enabling the data scientist to put into practice on the public Cloud principles and
methodologies learnt in courses concerned with data storage, processing, analysis, and machine
learning. Indeed, in these areas, present day industrial and enterprise applications typically require
storage volumes, computing power and bandwidth at a scale impossible or (even for large organizations)
impractical to attain with proprietary equipment. In realistic Data Science scenarios, it is therefore hardly
avoidable for the data scientist to resort to the Cloud, i.e. storage and computing services offered by
third-party providers over the public Internet, with a pay-per-use cost model.

In a nutshell, quoting reference [2], we may say that: “The Cloud turbocharges Data Science”.

Google Cloud is the platform of choice, for its ease of use and free availability to students.

SQL on Google Cloud and BigQuery: performing structured queries on BigQuery and Cloud SQL.
Importing data from CSV files.

Data acquisition into Google Cloud: downloading selected data from a large public data set over the
internet, and processing it with Google App Engine.

Google Cloud Dataflow: processing a real-time, real-world data set, and storing the results on the
cloud. Case study: real-time geospatial data.

Visualization with Google Data Studio: Visualizing data stored in Google Cloud SQL. Visualizing Real
Time Geospatial Data.

Google Datalab for Data Analysis: loading text data into Google BigQuery; rapid exploratory data
analysis with Google Cloud Datalab notebooks.
Google Cloud AI Platform: using Google AI Platform to perform queries and present the data.

Evaluating a Data Model: partitioning a data set into a training set and a test set; evaluating various predictive models.

Machine Learning with Spark on Google Cloud Dataproc. Implementing logistic regression through machine learning on Apache Spark running on a Google Cloud Dataproc. Developing a model from a multivariable dataset.

Machine Learning with TensorFlow: developing and evaluating prediction models.

MapReduce e Hadoop on Google Cloud: exploiting parallelism and machine clusters.

TESTI DI RIFERIMENTO
3. Lecture notes, to be made available through the Studium portal.

ALTRO MATERIALE DIDATTICO
Lecture notes will be made available through the Studium portal.

PROGRAMMAZIONE DEL CORSO

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>Riferimenti testi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Google Cloud (GC): Performing structured queries on BigQuery</td>
</tr>
<tr>
<td>2</td>
<td>GC: Performing structured queries on Cloud SQL</td>
</tr>
<tr>
<td>3</td>
<td>GC: Importing big data from CSV files</td>
</tr>
<tr>
<td>4</td>
<td>Downloading large public data sets to GC</td>
</tr>
<tr>
<td>5</td>
<td>Processing data with the Google App Engine</td>
</tr>
<tr>
<td>6</td>
<td>GC Dataflow: processing a real-time, real-world data set</td>
</tr>
<tr>
<td>7</td>
<td>Case study: real-time geospatial data on GC</td>
</tr>
<tr>
<td>8</td>
<td>GC Data Studio: Visualizing data from Google Cloud SQL</td>
</tr>
<tr>
<td>9</td>
<td>GC Datalab: Data Analysis and Google BigQuery</td>
</tr>
<tr>
<td>10</td>
<td>GC Datalab notebooks for rapid exploratory data analysis</td>
</tr>
<tr>
<td>11</td>
<td>GC AI Platform: queries and data presentation</td>
</tr>
</tbody>
</table>
Partitioning a data set into a training set and a test set

Lecture notes

Predictive models and their evaluation

Lecture notes

Machine Learning (ML) with Spark on GC

Lecture notes

ML with Spark on GC: implementing logistic regression

Lecture notes

ML with Spark on GC: Developing a model from a multivariable dataset

Lecture notes

ML with TensorFlow on GC: developing and evaluating predictive models

Lecture notes

ML with TensorFlow on GC: developing and evaluating predictive models

Lecture notes

MapReduce e Hadoop on Google Cloud: exploiting parallelism and machine clusters

Lecture notes

VERIFICA DELL'APPRENDIMENTO

MODALITÀ DI VERIFICA DELL'APPRENDIMENTO
Laboratory session individually performed by the student vis-à-vis the lecturer. The student will be required to carry out the Cloud-based procedures demonstrated during the lectures, as well as to discuss their significance, and critically assess their outcomes. Learning assessment may also be carried out online, should the conditions require it.

ESEMPI DI DOMANDE E/O ESERCIZI FREQUENTI
See material available on the Studium portal.