ADVANCED MACHINE LEARNING AND KNOWLEDGE DISCOVERY

12 CFU - 1° e 2° semestre

Docenti titolari dell'insegnamento

CONCETTO SPAMPINATO - Modulo KNOWLEDGE DISCOVERY - ING-INF/05 - 6 CFU
 Email: cspampin@diei.unict.it
 Edificio / Indirizzo: DIEEI, Plesso 13, stanza 8, Cittadella Universitaria
 Telefono: 095/7382057
 Orario ricevimento: Su prenotazione via email

VINCENZA CARCHIOLO - Modulo ADVANCED MACHINE LEARNING - INF/01 - 6 CFU
 Email: vincenza.carchiolo@unict.it
 Edificio / Indirizzo: Edificio 3 - piano V - stanza 11
 Telefono: 095 7382359
 Orario ricevimento: lunedì 12:00-13:00 giovedì 9:00-10:00

OBIETTIVI FORMATIVI

- KNOWLEDGE DISCOVERY
 This module covers the fundamental concepts of deep learning methods and how to use them for extracting, modelling and visualizing the learned knowledge.

 Topics include: neural networks with backpropagation, convolutional neural networks, recurrent neural networks, methods for representation learning, and how to use them under different learning regimes (supervised, unsupervised and reinforcement learning) and in variety of real-world applications ranging from computer vision, machine translation and medical image analysis.

 This module also covers techniques of explainable AI (XAI) for understanding and visualizing how deep models make decisions and their generalization capabilities.

 The learning objectives are:

 a) to understand and use the main methodologies and techniques for learning from data

 b) to understand the main methodologies to design and implement neural networks for real-world applications

 c) to understand how to extract and learn knowledge in scenarios when supervision cannot be provided

 d) to understand and foresee the reliability of machine learning methods in operational scenarios.
Knowledge and understanding

- To understand the main concepts of learning from data
- To understand concepts and tools for building intelligent systems using supervision and no supervision
- To understand the most important machine learning and artificial intelligence methodologies and techniques used by industries to make sense of data in order to support the decision process
- To understand what are the most appropriate techniques to be used in different real-world applications
- To understand and interpret how machine learning models work in order to uncover inner mechanisms of black-box methods

Applying knowledge and understanding

- To be able to effectively understand and use the main tools for creating, loading and manipulating datasets.
- To design and implement from scratch a machine learning system following application-derived constraints in terms of modelling and data
- To understand proper benchmarks and baselines and analysing achieved results and their generalization in real-world applications
 - To be able to apply methodologies and techniques to analyse data.

ADVANCED MACHINE LEARNING

The module will focus on the implementations of various machine learning techniques and their applications in various domains. The primary tools used in the class are the Python programming language and several associated libraries.

MODALITÀ DI SVOLGIMENTO DELL’INSEGNAMENTO

- KNOWLEDGE DISCOVERY
 The main teaching methods are as follows:
 - Lectures, to provide theoretical and methodological knowledge of the subject;
 - Hands-on exercises, to provide “problem solving” skills and to apply design methodology;
 - Laboratories, to learn and test the usage of related tools.
 - Paper reading and presentations to enhance understanding of the core concepts
• Seminars by renowned experts (from both universities and industries) in the field to understand the current state of the art.

Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.

• ADVANCED MACHINE LEARNING
 Lectures, hands-on exercises, paper reading, student presentations and seminars

 Should teaching be carried out in mixed mode or remotely, it may be necessary to introduce changes with respect to previous statements, in line with the programme planned and outlined in the syllabus.

PREREQUISITI RICHIESTI

• KNOWLEDGE DISCOVERY
 Python programming language, statistical learning basic concepts

• ADVANCED MACHINE LEARNING
 Python programming language, Linear Algebra

FREQUENZA LEZIONI

• KNOWLEDGE DISCOVERY
 Strongly recommended. Attending and actively participating in the classroom activities will contribute positively towards the overall assessment of the final exam.

• ADVANCED MACHINE LEARNING
 Strongly recommended. Attending and actively participating in the classroom activities will contribute positively towards the overall assessment of the oral exam.

CONTENUTI DEL CORSO

• KNOWLEDGE DISCOVERY
 The KD module consists of two parts: the first one will be addressing the general and modern techniques based on deep learning paradigm to create KD systems from data, while the second one on how to extract, represent and visualize knowledge from data and trained models.

 Part I: Methods and Architectures
 Neural Networks and Backpropagation
- Derivatives and Gradient Descent
- Neural Network Representation, Gradient descent for Neural Networks
- Forward and Back Propagation
- The revolution of depth: deep learning
- Optimization algorithms: Mini-batch gradient descent, Exponentially weighted average, Gradient descent with momentum, RMSprop, Adam optimization algorithm, Learning rate decay
- Training aspects of deep learning: Regularization, Dropout, Normalizing inputs, Vanishing / Exploding gradients, Weight Initialization for Deep Networks

Convolutional Neural Networks
- Foundations: padding, strided convolution, dilation, 2D and 3D convolution, separable convolution, pooling
- State of the art models: AlexNet, ResNets, DenseNets, Inception
- Transfer Learning and Data Augmentation

Recurrent Neural Networks
- LSTM and variants
- Attention mechanisms

Part II: Knowledge Discovery from Data and Models

Unsupervised Learning with Deep Networks
- Representation and Feature Learning
- Autoencoders and Variational Autoencoders
- Generative Adversarial Networks
- Graph Neural Networks

Reinforcement Learning
- Introduction to Reinforcement Learning
- Policy Gradients
- Actor-Critic Algorithms
- Value Function Methods
Deep RL with Q-functions

Knowledge Discovery in Deep Models: Explainable AI (XAI)

- Visualizing Convolutional Neural Decisions
- Guided Backpropagation
- Deep Generator Networks
- CNN Visualization: Activation based and gradient based methods

Deep Learning Frameworks:

- Overview of the most used DL frameworks
- PyTorch and Jupyter Notebooks

Applications:

- Computer vision
- Medical Image Analysis
- Machine translation

ADVANCED MACHINE LEARNING

Introduction to the Course

- Introduction to Machine Learning
- Brief Python review and an overview of Numpy and Pandas
- Review of data Characteristics of Data and Preparation and Preprocessing

Supervised Learning

- Classification and Prediction using K-Nearest-Neighbor
- Classifying with Probability Theory; Naïve Bayes
- Building Decision Trees
- Regression models
- Evaluating predictive models
- Ensemble Models: Bagging and Boosting

Unsupervised Learning
- Clustering using K-Means
- Hierarchical Clustering
- Association Rule discovery
- Principal Component Analysis and Dimensionality Reduction
- Singular Value Decomposition

Brief note on Advance Topics

- Matrix Factorization
- Support Vector Machines
- Search and Optimization Techniques
- Markov models; time series analysis, sequential pattern mining

Real application domains

- Text Mining and document analysis/filtering
 - Content analysis, TF-IDF transformation, text categorization, document clustering
- Recommender systems
 - Neighborhood methods (user- and item-based)
 - Matrix factorization
 - Marketing and finance data analysis

TESTI DI RIFERIMENTO

KNOWLEDGE DISCOVERY
2. Programming PyTorch for Deep Learning, I. Pointer, O'Reilly Media
3. Teaching materials and reading paper list provided by the instructor

ADVANCED MACHINE LEARNING
2. Python Data Science Essentials - Third Edition by Alberto Boschetti, Luca Massaron, Packt
3. Teaching materials and reading paper list provided by the instructor

ALTRO MATERIALE DIDATTICO

- **KNOWLEDGE DISCOVERY**
 All teaching material will be published both on Studium and on www.perceivelab.com/teaching

- **ADVANCED MACHINE LEARNING**
 All teaching material will be published both on Studium and on Microsoft Team

PROGRAMMAZIONE DEL CORSO

KNOWLEDGE DISCOVERY

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>Riferimenti testi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Neural networks: derivatives, gradient descent, back-propagation</td>
<td>3</td>
</tr>
<tr>
<td>2 Deep Learning: basic concepts, optimization algorithms, training procedures</td>
<td>1, 3</td>
</tr>
<tr>
<td>3 Convolutional Neural Networks</td>
<td>1, 3</td>
</tr>
<tr>
<td>4 Recurrent Neural Networks</td>
<td>1, 3</td>
</tr>
<tr>
<td>5 Unsupervised Learning with Deep Networks: Representation and Feature Learning</td>
<td>1, 3</td>
</tr>
<tr>
<td>6 Autoencoders and Variational Autoencoders</td>
<td>1, 3</td>
</tr>
<tr>
<td>7 Generative Adversarial Networks</td>
<td>1, 3</td>
</tr>
<tr>
<td>8 Graph Neural Networks</td>
<td>3</td>
</tr>
<tr>
<td>9 Reinforcement Learning: Deep Q-Networks and Policy Gradient</td>
<td>3</td>
</tr>
<tr>
<td>10 Explainable AI (XAI): Guided Backpropagation, Deep Generator Networks, CNN Visualization</td>
<td>3</td>
</tr>
<tr>
<td>11 Deep Learning Frameworks: PyTorch and Jupyter Notebooks</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

ADVANCED MACHINE LEARNING

<table>
<thead>
<tr>
<th>Argomenti</th>
<th>Riferimenti testi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction to Machine Learning</td>
<td>1, 3</td>
</tr>
<tr>
<td>2 Python review</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Pandas, Numpy, Matplotlib</td>
</tr>
<tr>
<td>4</td>
<td>Classification and Prediction: K-Nearest-Neighbor</td>
</tr>
<tr>
<td>5</td>
<td>Classification and Naive Bayes</td>
</tr>
<tr>
<td>6</td>
<td>Decision Tree</td>
</tr>
<tr>
<td>7</td>
<td>Regression models</td>
</tr>
<tr>
<td>8</td>
<td>Evaluating predictive models</td>
</tr>
<tr>
<td>9</td>
<td>Ensemble Models: Bagging and Boosting</td>
</tr>
<tr>
<td>10</td>
<td>Clustering using K-Means</td>
</tr>
<tr>
<td>11</td>
<td>Hierarchical Clustering</td>
</tr>
<tr>
<td>12</td>
<td>Association Rule discovery</td>
</tr>
<tr>
<td>13</td>
<td>Dimensional reduction</td>
</tr>
<tr>
<td>14</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>15</td>
<td>Advanced topic</td>
</tr>
<tr>
<td>16</td>
<td>Sckit learn</td>
</tr>
<tr>
<td>17</td>
<td>ML in NLP</td>
</tr>
<tr>
<td>18</td>
<td>ML for Reccomender System</td>
</tr>
</tbody>
</table>

VERIFICA DELL'APPRENDIMENTO
MODALITÀ DI VERIFICA DELL'APPRENDIMENTO

- **KNOWLEDGE DISCOVERY**
 The final exam consists of the development of a project in Pytorch, addressing one of the topics discussed during classes, together with a final report (structured as a scientific paper) discussing motivation, models, datasets and results used in the project.

 The exam is evaluated according to the ability to create a deep learning model from scratch for extracting and learning knowledge from data on a given real-world problem, to understand how to properly measure its performance and to motivate the devised solutions.

 The vote on the knowledge discovery module will account for 50% of the total grade for the entire course.

 The module also foresees intermediate assignments. These assignments (between two to four) include: a) python scripts to solve simple basic learning problems on datasets discussed during with the instructor in order to avoid overlap and b) quizzes to verify the correct understanding of the presented techniques.
The grading policy for the KD module is:

- 50%: Final project
- 35%: Programming assignments
- 15%: Quizzes

Learning assessment may also be carried out on line, should the conditions require it.

- **ADVANCED MACHINE LEARNING**
 There will be two assignments and one final exam. The assignments will contain written questions that require some Python programming. The final exam consists of quizzes and a final assignment.

 The final assignment concerns comparative analysis on a given problem that must be presented in a final report and discussed in an oral discussion. The vote on the advanced machine learning module will account for 50% of the total grade for the entire course.

 The grading policy for the AML module is:

 - 50%: Final assignments
 - 30% Intermediate assignments
 - 20%: Quizzes

 Learning assessment may also be carried out on line, should the conditions require it.

ESEMPI DI DOMANDE E/O ESERCIZI FREQUENTI

- **KNOWLEDGE DISCOVERY**
 Examples of questions and exercises are available on the Studium platform and on the course website.

- **ADVANCED MACHINE LEARNING**
 Examples of questions and exercises are available on the Studium platform and on the course website.