CHEMISTRY

CHIM/03 - 6 CFU - 2° Semester

Teaching Staff

ANTONINO GULINO


Learning Objectives

Acquisition of important concepts of general chemistry, inorganic chemistry, stoichiometry and notes on organic matter. The course is organized so as to provide a good knowledge of basic chemistry (inorganic and stoichiometry) and is divided into a theoretical part and a part consisting of exercises aimed at solving chemistry problems (knowledge and understanding). The aim of the course is to acquire reasoning skills to deal with the study of chemical phenomena with analytical and numerical methods (applying knowledge and understanding). At the end of the course students should have their own judgment: ability to propose their own numerical exercises (making judgments) on specific topics.

In particular:

This course is specifically theoretical and contains many numerical exercises.

The specific training objectives of this course are:

Understanding the atomic structure;

understanding the mechanisms of chemical bond formation;

to know the chemical interactions in solids, liquids and understanding the gas state equations;

to know the main thermodynamic and kinetic quantities involved in chemical reactions;

To assess the conditions of chemical equilibrium;

to quantitatively determine the gaseous equilibria, in aqueous solutions and in electrochemical systems;

to discuss all proposed activities with scientific method and appropriate language.

To acquire the ability to set and correctly perform exercises on the various types of chemical reactions

Furthermore, in reference to the so-called Dublin Descriptors,

this course helps to acquire the following transversal skills:

Knowledge and understanding:

Capacity of inductive and deductive reasoning.

Ability to outline a chemical reaction in qualitative and quantitative terms.

Ability to set a problem using appropriate relationships between chemical and physical quantities and solve it with analytical methods.

Ability to apply knowledge:

Ability to apply the acquired knowledge for the description of chemical phenomena using the scientific method with rigor.

Capacity for quantitative calculation of reagents and products in chemical reactions.

Quantitative calculations on homogeneous solutions, of their colligative properties, of pH, and of electro-chemical phenomena.

Autonomy of judgment:

Ability to critical reasoning.

Ability to identify the most appropriate solutions to solve chemical problems.

Ability to identify the predictions of a theory or a model.

Ability to assess the accuracy required for stoichiometric calculations.

Communication skills:

Ability to describe a scientific topic in oral form, with properties of language and terminological rigor, illustrating the reasons and results.


Course Structure

Theoretical lessons will be alternate with numerous numerical exercises in the classroom. Students will be actively involved in numerical exercises on the board. If possible, as in the last 3-4 years, the teacher will experimentally perform simple and harmless chemical reactions in the classroom such as the preparation of cupric oxide, cuprous oxide, acid-base titrations with pH indicators, a redox titration (KMnO4 - H2C2O4) and the preparation of a chemical pile.



Detailed Course Content

Starting course on the nomenclature.

1 - STRUCTURE OF THE ATOM
Subatomic particles: Electron, proton, neutron - atomic number, mass number - isotopes - atomic mass unit - Bohr / Rutherford atomic model. Wave Mechanical atom model. - Atomic orbitals - quantum numbers - Principle of exclusion of Pauli - principle of maximum multiplicity - the principle of aufbau.

2 - PERIODIC SYSTEM OF ELEMENTS
Periodical classification and electronic configuration of the elements - Periodic properties: atomic and ionic radii, ionization energy, electron affinity, and electronegativity.

3 - CHEMICAL BOND
Ionic bond, covalent bond, valence bond theory. Electronegativity of atoms and polarity of bonds - Oxidation number. Dative bond. V.S.E.P.R. theory. Hybrid orbitals and molecular geometry. Resonance. Chemical bonding and structural formulas of the most common inorganic compounds. Molecular orbital theory. Metal bond and elements o the band theory.

4 - INTERMOLECULAR FORCES
Van der Waals and London forces. Hydrogen bond.

5 - ELEMENTS OF THERMODYNAMICS.

6 - GAS LAWS.
General characteristics of the gaseous state. Ideal gas. Ideal gas laws. State law of the ideal gas. Law of partial pressures and volumes. Gas diffusion. Real gases. Numerical applications.

7 - STOICHIOMETRY
The concept of mole - Stoichiometry laws. Formula determination of compounds - The chemical equation and its balance. Redox reactions. Stoichiometry: quantitative relationships in chemical reactions. Numerical applications.

8 - CONDENSED STATES AND CHANGES
Solid state characteristics depending on the chemical bond. Characteristics of liquids. State changes. State diagram of water and of carbon dioxide. Mobile equilibrium principle.

9 - AQUEOUS SOLUTIONS
Concentration units. Solubility. Henry's Law. Colligative properties of solutions: Vapour pressure and Raoult's Law;- Cryoscopy and ebullioscopy; Osmosis and osmotic pressure. Electrolyte solutions. Colligative properties of electrolytes. Degree and dissociation factor. Numerical applications.

10 - THE CHEMICAL EQUILIBRIUM
The equilibrium in homogeneous systems. Mass Action Law and equilibrium constant. Factors affecting the equilibrium. Ionic equilibria in aqueous solutions. Dissociation of water and pH. Theory of acids and bases: Arrhenius's acids and bases, Bronsted and Lewis acids and bases. Ampholytes. Hydrolysis. Buffer solutions. Calculation of pH in acidic, basic, salts and buffer solutions. Acid-base reactions and stoichiometry of solutions. Heterogeneous equilibria. Solubility product. Numerical applications.

11 - ELECTROCHEMISTRY
Galvanic cells. Nernst equation. Series of standard potentials and its importance. Concentration cells. Electrolysis. Faraday's laws.

12 - ELEMENTS OF KINETIC

Reaction rate, reaction order, half-life, reaction molecularity, collision theory, Arrhenius equation and activation energy, factors that influence the reaction rate, catalysts.

13 - INORGANIC CHEMISTRY
Metals and non-metals: general information on the chemical and physical properties. General characteristics of each group of the periodic system. Alkaline and alkaline earth metals. Main oxidation states and compounds of Hydrogen, Oxygen, Carbon, Nitrogen, Phosphorus, Sulfur and Chlorine. Transition elements: general information. Coordination compounds. Ligands. Coordination number and geometry. Nomenclature. Outline of theories of chemical bonding in coordination compounds.



Textbook Information

Texts 1-4 are equivalent and the student is free to choose others not listed.
Texts of exercises 5-7 are equivalent and the student is free to choose others not listed.

1. KOTZ, TREICHEL, TOWNSEND Chimica V edizione - EdiSES
2. ATKINS, JONES, Principi di Chimica – Zanichelli
3. PETRUCCI, HERRING, MADURA, BISSONNETTE, Chimica Generale - Piccin
4. EBBING, Chimica Generale - Editoriale Grasso
5. NOBILE, MASTRORILLI, Vol.1 e 2, Esercizi di Chimica - Ambrosiana
6. GIOMINI, BALESTRIERI, GIUSTINI, Fondamenti di Stechiometria – EdiSES
7. P.MICHELIN LAUSAROT, G.A. VAGLIO, Fondamenti di Stechiometria - Piccin




Open in PDF format Versione in italiano