ISTITUZIONI GEOMETRIA SUPERIORE

12 CFU - 1° e 2° semestre

Docenti titolari dell'insegnamento

ANGELO BELLA - MODULO 1 - MAT/03 - 6 CFU
SANTI DOMENICO SPADARO - MODULO 2 - MAT/03 - 6 CFU


Obiettivi formativi


Modalità di svolgimento dell'insegnamento


Prerequisiti richiesti



Frequenza lezioni



Contenuti del corso



Testi di riferimento


Altro materiale didattico



Programmazione del corso

MODULO 1
 ArgomentiRiferimenti testi
1Gli assiomi della teoria degli insiemi. Buon ordinamenti.
2I numeri ordinali e la loro relazione con i buon ordinamenti.
3Equipotenza e cardinalita'. I numeri cardinali e la loro aritmetica.
4La nozione di cofinalita' di un cardinale. Cardinali regolari e teorema di Koenig.
5L'ipotesi del continuo.
6Cardinali misurabili.
7Applicazioni dell'induzione transfinita.
8Filtri e ultrafiltri. Il numero degli ultrafiltri liberi su un insieme.
9Ultrafiltri speciali sugli interi. Esistenza di ultrafiltri selettivi.
10Lo spazio topologico degli ultrafiltri sugli interi. Proprieta' della compattificazione di Cech-Stone.
11Applicazioni alla numerabile e alla sequenziale compattezza.
12Lo spazio topologico degli ultrafiltri liberi sugli interi. Il teorema di non omogeneita' di Rudin.
MODULO 2
 ArgomentiRiferimenti testi
1Richiami di algebra multilineare.
2Varietà topologiche e differenziabili.
3Spazio tangente e campi di vettori.
4Tensori nello spazio tangente, campi di tensori.
5La derivata esterna.
6Curve nello spazio, lunghezza d’arco, curvatura, torsione.3  
7Superfici parametriche, I e II forma fondamentale, curvatura gaussiana e teorema Egregium, geodetiche.
8Connessioni lineari e varietà Riemanniane.


Verifica dell'apprendimento


MODALITÀ DI VERIFICA DELL'APPRENDIMENTO

ESEMPI DI DOMANDE E/O ESERCIZI FREQUENTI



Apri in formato Pdf English version