ELECTRONICS

ING-INF/01 - 6 CFU - 1° Semester

Teaching Staff

EGIDIO RAGONESE


Learning Objectives

The course is aimed at providing the students with the knowledge on basic electron devices and analog and digital circuits in CMOS technology. Specifically, fabrication tecnologies and operating principles of the most common electron devices will be descrbed and the most basic analog and digital topologies will be discussed with enphasis on the techniques of analysis and when possible also on the design criteria. Circuits based on the Operational Amplifier will be also introduced. Besides, exercitations and computer simulations will be offered and aimed at consolidating of theoretical topics and the design techniques discussed.

At the end of the course the student will be aware of the main electronic devices and their field of application and will be able to analyze and design simple analog and digital circuits.


Course Structure

The course is based on both frontal lessons and exercitations aimed at developing, consolidating and putting in practice the theoretical topics and the analysis and design techniques developed. Seminars held by experienced designers and researchers form the industries will be also organized.



Detailed Course Content

  1. Operational Amplifiers: An Example of an Analog Electronic System. Amplification. Voltage Gain, Current Gain and Power Gain. The Decibel Scale. The Differential Amplifier. Differential Amplifier Voltage Transfer Characteristic. Differential Voltage Gain. Differential Amplifier Model. Ideal Operational Amplifier. *Assumptions for Ideal Operational Amplifier. *The Inverting Amplifier. *The Transresistance Amplifier. *The Noninverting Amplifier. *The Unity-Gain Buffer, or Voltage Follower. *The Summing Amplifier. *The Difference Amplifier. An active Low-Pass Filter. An Active High-Pass Filter. *The Integrator. *The Differentiator. Nonidealities: Common mode gain. CMRR. I/O resistances. Offset. Slew rate.Introduction to Electronics: A brief history of electronics. Classification of Electronic Signals. A/D and D/A Converters. Notational Conventions. Dependent sourced. Important Concepts from Circuit Theory (Kirchhoff’s lows, dividers, Thevenin and Norton Equivalents). Frequency Spectrum of Electronic Signals. Amplifiers. Example: FM receiver.
  2. Solid-State Electronics: Solid-State Electronic Materials. Covalent Bond Model. Intrinsic carrier. concentration. Mass action. *Drift Currents and Mobility in Semiconductors. Velocity Saturation. Resistivity of Intrinsic Silicon. *Impurities in Semiconductors. Electron and Hole Concentrations in Doped Semiconductors. *Diffusion Currents. *Total Current. Energy Band Model.
  3. Solid-state Diodes and Diode circuits: Junction diode.The *i-v Characteristics of the Diode. *Diode Characteristics Under Reverse, Zero, and Forward Bias. Diode Temperature Coefficient. *Reverse Breakdown and Zener Diode. pn Junction Capacitance in Reverse Bias and Forward Bias. Dynamic Switching Behavior of the Diode. Large signal Model. Diode SPICE Model. *Diode Circuit Analysis. Load-Line Analysis. Analysis Using the Mathematical Model for the Diode (small signal resistance). *Constant Voltage Drop Model. Multiple-Diode Circuits. *Half-Wave Rectifier Circuits with R, C and RC load. Full-Wave Rectifier and Bridge Circuits. *Voltage regulator with Zener diode. Photo Diodes and Photodetectors. Schottky Barrier Diodes. Solar Cells. Light-Emitting Diodes.
  4. Field-effect Transistors: Characteristics of the MOS Capacitor. Accumulation Region. Depletion5. Region. Inversion Region. The NMOS Transistor. *Qualitative i-v Behavior of the NMOS Transistor. *Triode Region Characteristics of the NMOS Transistor. On Resistance. Saturation of the i-v Characteristics. *Mathematical Model in the Saturation (Pinch-Off) Region Transconductance. Channel-Length Modulation. Body Effect. PMOS Transistors. MOSFET Circuit Symbols. NMOS Transistor Capacitances in the Triode Region. Capacitances in the Saturation Region. Capacitances in Cutoff. *MOSFET biasing (4 resistors network) and analysis.
  5. Digital circuits: Ideal Logic Gates. *Logic Level Definitions and Noise Margins. Logic Gate Design. Goals. Dynamic Response of Logic Gates. *Rise Time and Fall Time. *Propagation Delay. *PowerDelay Product. Review of Boolean Algebra. CMOS logic circuits. *Static characteristics of the CMOS Inverter. CMOS Voltage Transfer Characteristics. *CMOS NOR and NAND Gates. Design of Complex Gates in CMOS. Cascade Buffers and Delay Model. Optimum Number of Stages. Bistable latch. *SR Flip-Flop. *JK Flip flop. Flip-Flop race condition. The D-Latch Using Transmission Gates. *MasterSlave Flip-Flop. Edge triggered Flip flop. Counters and registers. Random Access Memories (RAMs). *6-T cell. Dynamic RAMs. *1-T cell.
  6. Operational Amplifiers: An Example of an Analog Electronic System. Amplification. Voltage Gain, Current Gain and Power Gain. The Decibel Scale. The Differential Amplifier. Differential Amplifier Voltage Transfer Characteristic. Differential Voltage Gain. Differential Amplifier Model. Ideal Operational Amplifier. *Assumptions for Ideal Operational Amplifier. *The Inverting Amplifier. *The Transresistance Amplifier. *The Noninverting Amplifier. *The Unity-Gain Buffer, or Voltage Follower. *The Summing Amplifier. *The Difference Amplifier. An active Low-Pass Filter. An Active High-Pass Filter. *The Integrator. *The Differentiator. Nonidealities: Common mode gain. CMRR. I/O resistances. Offset. Slew rate.
  7. Small-signal Modeling and linear amplification: The Transistor as an Amplifier. Coupling and Bypass Capacitors. Circuit Analysis Using dc and ac Equivalent Circuits. *Small-Signal Modeling of the Diode. *Small-Signal Models for Field-Effect Transistors. *Intrinsic Voltage Gain of the MOSFET. *The Common-Source Amplifier (Voltage Gain. I/O resistances). Power dissipation and signal swing. *Amplifiers classification. CS, CD, CG configurations. *CS with resistive degeneration. AC-coupled multi stage amplifiers.
  8. Current Mirrors: *DC analysis of MOS current mirrors. *Changing the MOS Mirror Ratio. Cascode current mirror.
  9. Frequency response: *Frequency response of Amplifiers, Midband gain, Low and high cutoff frequencies (fL and fH). *Estimation of fL through the short-circuit time constant method for CS, CG, CD amplifier. *High-frequency MOSFET model. *Transition frequency, fT. Channel Length. *L’effetto Miller. *High-Frequency C-S Amplifier Analysis. The Miller Effect. Common-Emitter and Common-Source Amplifier High-Frequency Response. *Estimation of fH through the open-circuit time constant method for CS.
  10. Bipolar transistor: Bipolar transistor basics


Textbook Information

1. Jaeger-Blalock, Microelettronicc Ed. Mc-Graw-Hill 5th Edition (with Connect for with on-line access)

2. Sedra - Smith, Microelettronic circuits, Oxford Univerity press.




Open in PDF format Versione in italiano